CPS 230

DESIGN AND ANALYSIS
OF ALGORITHMS

Fall 2008

Instructor:Herbert Edelsbrunner
Teaching AssistanZhigiang Gu

CPS 230 Fall Semester of 2008

Table of Contents

1 Introduction 3 \% GRAPH ALGORITHMS 45
| DESIGN TECHNIQUES 4 13 Graph Search 46
14 Shortest Paths 50
2 Divide-and-Conquer 5 15 Minimum Spanning Trees 53
3 Prune-and-Search 8 16 Union-Find 56
4 Dynamic Programming 11 Fourth Homework Assignment 60
5 Greedy Algorithms 14
First Homework Assignment 17 V TOPOLOGICALALGORITHMS 61
Il SEARCHING 18 17 Geometric Graphs 62
18 Surfaces 65
6 Binary Search Trees 19 19 Homology 68
7 Red-Black Trees 22 Fifth Homework Assignment 72
8 Amortized Analysis 26
9 Splay Trees 29 VI GEOMETRICALGORITHMS 73
Second Homework Assignment 33
20 Plane-Sweep 74
1" PRIORITIZING 34 21 Delaunay Triangulations 77
22 Alpha Shapes 81
10 Heaps and Heapsort 35 Sixth Homework Assignment 84
11 Fibonacci Heaps 38
12 Solving Recurrence Relations 41 VI NP-COMPLETENESS 85
Third Homework Assignment 44
23 Easy and Hard Problems 86
24 NP-Complete Problems 89
25 Approximation Algorithms 92

Seventh Homework Assignment 95

1 Introduction Overview. The main topics to be covered in this course

are
Meetings. We meet twice a week, on Tuesdays and . .
Thursdays, from 1:15 to 2:30pm, in room D106 LSRC. | Design Techniques;
Il Searching;
Communication. The course material will be delivered Il Prioritizing;

in the two weekly lectures. A written record of the lec- |V Graph Algorithms;
tures will be available on the web, usually a day after the
lecture. The web also contains other information, such as
homework assignments, solutions, useful links, etc. The VI Geometric Algorithms;

V Topological Algorithms;

main supporting text is VIl NP-completeness.
TARJAN. Data Structures and Network AlgorithmSIAM, .)))
1983, The emphasis will be on algoritheesignand on algo-

rithm analysis For the analysis, we frequently need ba-
sic mathematical tools. Think of analysis as the measure-
ment of the quality of your design. Just like you use your
sense of taste to check your cooking, you should get into
the habit of using algorithm analysis to justify design de-
KLEINBERG AND TARDOS. Algorithm Design.Pearson Ed- cisions when you write an algorithm or a computer pro-
ucation, 2006. gram. This is a necessary step to reach the next level in
mastering the art of programming. | encourage you to im-
plement new algorithms and to compare the experimental

Examinations. There will be a nal exam (coveringthe e rformance of your program with the theoretical predic-
material of the entire semester) and a midterm (at the be- 4, gained through analysis.

ginning of October), You may want to freshen up your
math skills before going into this course. The weighting
of exams and homework used to determine your grades is

The book focuses on fundamental data structures and
graph algorithms, and additional topics covered in the
course can be found in the lecture notes or other texts in
algorithms such as

homework 35%,
midterm 25%,
nal 40%.

Homework. We have seven homeworks scheduled
throughout this semester, one per main topic covered in
the course. The solutions to each homework are due one
and a half weeks after the assignment. More precisely,
they are due at the beginning of the third lecture after the
assignment. The seventh homework may help you prepare
for the nal exam and solutions will not be collected.

Rule 1. The solution to any one homework question must
ton a single page (together with the statement of the
problem).

Rule 2. The discussion of questions and solutions before
the due date is not discouraged, but you must formu-
late your own solution.

Rule 3. The deadline for turning in solutions is 10 min-
utes after the beginning of the lecture on the due date.

| DESIGN TECHNIQUES

a b~ wWN

Divide-and-Conquer
Prune-and-Search

Dynamic Programming
Greedy Algorithms

First Homework Assignment

2 Divide-and-Conquer

We use quicksort as an example for an algorithm that fol- iT T T T T . q‘ ‘i
lows the divide-and-conquer paradigm. It has the repu-

tation of being the fasted comparison-based sorting algo- 3 5 4 2 1 4 E
rithm. Indeed it is very fast on the average but can be slow iT T T‘ T‘j

for some input, unless precautions are taken.

The algorithm. Quicksort follows the general paradigm Tm

of divide-and-conquer, which meansdivides the un-

sorted array into two, itecurseson the two pieces, and it Figure 1: First,i andj stop at items 9 and 1, which are then
nally combinesthe two sorted pieces to obtain the sorted swapped. Secondandj cross and the pivot, 7, is swapped with
array. An interesting feature of quicksort is that the dévid item 2.

step separates small from large items. As a consequence,

combining the sorted pieces happens automatically with-

out doing anything extra Special cases (i) and (iii) are ok but case (ii) requires a
' stopper aiA[r + 1]. This stopper must be an item at least
void QUICKSORT(int :r) as large ax. If r < n 1 this stopper is automatically
it “<r then m = SP,LlT("r)' given. Forr = n 1, we create such a stopper by setting
QUICKSORT(;m 1); Alnj=+1.

QUICKSORT(m +1;r)

endif Running time. The actions taken by quicksort can be

expressed using a binary tree: each (internal) node repre-
sents a call and displays the length of the subarray; see
Figure 2. The worst case occurs wh&ns already sorted.

We assume the items are storedifD::n 1]. The array
is sorted by calling QICKSORT(O;n 1).

Splitting. The performance of quicksort depends heav- |
ily on the performance of the split operation. The effect of |

splitting from™ tor is: 1 CIL T T 11

x = A[']is moved to its correct location &[m];
no iteminA[::m 1]is larger tharx;

no item inA[m + 1::r] is smaller tharx. Figure 2: The total amount of time is proportional to the sum
of lengths, which are the numbers of nodes in the correspgndi

Figure 1 illustrates the process with an example. The nine subtrees. In the displayed case this sum is 29.
items are split by moving a pointérfrom left to right
and another pointgrfrom right to left. The process stops In this case the tree degenerates to a list without branch-
wheni andj cross. To get splitting right is a bit delicate, ing. The sum of lengths can be described by the following
in particular in special cases. Make sure the algorithm is recurrence relation:
correct for (i)x is smallest item, (iix is largest item, (iii)
all items are the same. T(N) = n+T(n 1) =

—
i = :
i=1 2
int SpLIT(int “;r)
X=A[l],i=";j=r+1; The running time in the worst case is therefore iné).

repeatrepeat i++untl x Afi]; In the best case the tree is completely balanced and the

repeat j--untl x Af]; sum of lengths is described by the recurrence relation
if i<j then Swapr(i;j) endif 1

until i j; T _ +o 7 D 1

SWAP(';j); return j. (n) = n 2

If we assumen = 2K 1 we can rewrite the relation as By assumption on functiorSpLIT, the probability for
eachm 2 [O;n 1]is % Therefore the average sum

Uk) = (2% 1)+2 Uk 1) of array lengths split by QICKSORT is
= (2 D+2@*T D+e2Ki2 1)
K Al S |
_ ook B T(n) = n+% T+ T m 1):
- m=0
i=0
- ok K
=2k (21 To simplify, we multiply withn and obtain a second rela-
= (n+1) logy,(n+1) n: tion by substitutingn 1 for n:
The running time in the best case is therefore in nFr—q
O(nlogn). n T(n) = n?+2 T(i); (1)
i=0
"2
Randomization. One of the drawbacks of quicksort, as (n 1) T(n 1) = (n 1)°+2 T(@):(2)
described until now, is that it is slow on rather common i=0

almost sorted sequences. The reason are pivots that tend

to create unbalanced splittings. Such pivots tend to oc- Next we subtract (2) from (1), we divide (n + 1), we
cur in practice more often than one might expect. Hu- use repeated substitution to exprdqs) as a sum, and
man and often also machine generated data is frequently nally split the sum in two:

biased towards certain distributions (in this case, peamut

tions), and it has been said that 80% of the time or more, Tn) _ T(n 1) 2n 1
sorting is done on either already sorted or almost sorted n+1 n * n(n +1)
les. Such situations can often be helped by transferring T(h 2) on 3 on 1

the algorithm's dependence on the input data to internally =

+
. . . +
made random choices. In this particular case, we use ran- n 1t (n D n(n+1)

domization to make the choice of the pivot independent of _ Lol
the input data. AssumeARIDOM(;r) returns an integer - i(i +1)
p 2 [';r] with uniform probability: 1 r |
= 2 = =
+ +
ProgRANDOM(;r) = p] = ﬁ i=1 ! 1 i=1 i(i +1)

for each’ p r. Inother words, eacp 2 [;r]is .) .
equally likely. The following algorithm splits the array Bounding the sums. The second sum is solved directly

with a random pivot: by transformation to a telescoping series:
1
int RSPLIT(int ;r) r—d _ 'l_—%l 1
p= RANDOM(;r); SwWAP(';p); iy (1) oy il
return SPLIT(;r). 1
=1 o

We get arandomizedimplementation by substituting

sort depends op, which is produced by a random number for x ranging from 1 ton + 1; see Figure 3. The sum

generator. of ﬁ is the sum of areas of the shaded rectangles, and

because all rectangles lie below the grapl’;lzofve get a
bound for the total rectangle area:

Ig+1 d_X

1

Average analysis. We assume that the itemsAqj0::n
1] are pairwise different. The pivot splis into

<

L _
_ ey = In(n+1):

A[0:m 1], A[m]; Aim+1:n 1]

1/x

1 2 3 4

Figure 3: The areas of the rectangles are the terms in the sum,
and the total rectangle area is bounded by the integral from 1
throughn + 1.

We plug this bound back into the expression for the aver-
age running time:

r o1
T(n) < (n+1) ' 1
< 2 (n+1)_ln(n+1)
@ (n+1) logy,(n+1):

In words, the running time of quicksortin the average case
is only a factor of abou2=log, e = 1:386: : : slower than

Summary. Quicksort incorporates two design tech-
niques to ef ciently sortn numbers: divide-and-conquer
for reducing large to small problems and randomization
for avoiding the sensitivity to worst-case inputs. The av-
erage running time of quicksort is in(®logn) and the
extra amount of memory it requires is in(ldgn). For
the deterministic version, the average is overrdliper-
mutations of the input items. For the randomized version
the average is the expected running time dgeryinput
sequence.

in the best case. This also implies that the worst case can-

not happen very often, for else the average performance

would be slower.

Stack size. Another drawback of quicksort is the recur-
sion stack, which can reach a size 6fn) entries. This
can be improved by always rst sorting the smaller side
and simultaneously removing the tail-recursion:

void QUICKSORT(int ;r)
==,
while i<j do
m = RSPLIT(i;]);
if m i<j m
then QUICKSORT(i;m 1);i=m+1
else QUICKSORT(M +1;j);j=m 1
endif
endwhile

In each recursive call to QCK SORT, the length of the ar-
ray is at most half the length of the array in the preceding
call. This implies that at any moment of time the stack
contains no more thah+ log, n entries. Note that with-
out removal of the tail-recursion, the stack can redch)
entries even if the smaller side is sorted rst.

3 Prune-and-Search is even. The expected running time increases with increas-
ing number ofitemsT (k) T(m)if k m. Hence,

We use two algorithms for selection as examples for the 'R —

prune-and-search paradigm. The problem is to nd the T(n) n+ — maxfT(m 1);T(n m)g
i-smallest item in an unsorted collection mfitems. We N =1

could rst sort the list and then return the item in theh > 1

position, but just nding thei-th item can be done faster n+ T(m 1)

than sorting the entire list. As a warm-up exercise consider m=3+1

zeEfF;;ng the 1-st or smallest item in the unsorted array Assume inductively thaT (m) emform < n and

a suf ciently large positive constart. Such a constant
) c can certainly be found fom = 1, since for that case
min = L the running time of the algorithm is only a constant. This
for j=2to ndo _ _ _ establishes the basis of the induction. The caseitdms

if Afj]<A[min]then min = j endif reduces to cases of < n items for which we can use the

endfor induction hypothesis. We thus get

The index of the smallest item is found m 1 com- T(n) ot 2 ":ml 1
parisons, which is optimal. Indeed, there is an adversary v
argument, that is, with fewer than 1 comparisons we m=z J R
can change the minimum without changing the outcomes = n+c(n 1) = =+1
of the comparisons. 3 3 2 2

= n+—n —

4 2

Randomized selection. We return to nding thei- Assumingc 4 we thus haveT(n) cn as required.
smallest item for a xed but arbitrary integdr i n, Note that we just proved that the expected running time of

which we call therank of that item. We can use the split- ggg| 1 is only a small constant times that BSPLIT.
ting function of quicksort also for selection. As in quick- \jore precisely, that constant factor is no larger than four.
sort, we choose a random pivot and split the array, but we

recurse only for one of the two sides. We invoke the func-

tion with the range of indices of the current subarray and Deterministic selection. The randomized selection al-
the rank of the desired itern, Initially, the range consists ~ gorithm takes time proportional to? in the worst case,

of all indices between = 1 andr = n, limits included. for example if each splitis as unbalanced as possible. Itis
however possible to select in @)(time even in the worst
int RSELECT(int ;r;i) case. Thenedianof the set plays a special role in this al-
q= RSPLIT(;r);m=q " +1; gorithm. Itis de ned as the-smallestitem where= 31
if i<m thenreturn RSELECT(;q 1;i) if nis odd and = 2 or 222 if n is even. The determinis-
elseif i = mthenreturn q tic algorithm takes ve steps to select:
else return RSELECT(q+1;r;i m) . i R .
endif . Step 1. Partition then items into ¢ groups of size

at most 5 each.

For small sets, the algorithm is relatively ineffective and Step 2. Find the median in each group.

its running time can be improved by switching over to Step 3. Find the median of the medians recursively.

sorting when the size drops below some constant thresh-Step 4. splitthe array using the median of the medians
old. On the other hand, each recursive step makes some as the pivot

progress so that termination is guaranteed even without))
special treatment of small sets. Step 5. Recurse on one side of the pivot.

: . Ll o
It is convenientto denek = 2 and to partition such
Expected running time. For eachl m n, the that each group consists of items that are multiplek of
probability that the array is split into subarrays of sizes positions apart. This is what is shown in Figure 4 provided
m landn mis % For convenience we assume that we arrange the items row by row in the array.

the array so we can safely use the deterministic version of

o o o O O 0o O O O o

O 0 0 0 0 0 0 0 0 spltting.

© O O O @] O O O O]

o o o O | o o O O Worst-case running time. To simplify the analysis, we
o O O O |0 O O assume than is a multiple of 5 and ignore ceiling and

oor functions. We begin by arguing that the number of

Figure 4: The 43 items are partitioned into seven groups oftb a items less than or equal to the median of medians is at least
two groups of 4, all drawn vertically. The shaded items age th i—g. These are the rst three items in the sets with medians
medians and the dark shaded item is the median of medians. less than or equal to the median of medians. In Figure 4,
these items are highlighted by the box to the left and above
but containing the median of medians. Symmetrically, the
number of items greater than or equal to the median of
medians is at Ieas}g. The rst recursion works on a set

of @ medians, and the second recursion works on a set of

Implementation with insertion sort. We use insertion
sort on each group to determine the medians. Speci cally,
we sort the items in positions™ + k;*+2k; " +3k; +4k

of arrayA, for each’.

at mosth items. We have
void ISoRrT(int “;k;n) L I%,I 1
j=+k T(n) n+T§+T 10 -
while j ndoi=j;
while i>" and A[i]>A[i k]do We proveT (n) = O(n) by induction assuming (m)
Swap(i;i k), i=1 k ¢ mform < n andc a large enough constant.
endwhile ; . ¢
j=i+Kk T(n) N+ = n+ — n
endwhile . P 0
g
Although insertion sort takes quadratic time in the worst 10 '

case, it is very fast for small arrays, as in this applica-
tion. We can now combine the various pieces and write

the selection algorithm in pseudo-code. Starting with the " ;
g P 9 splitting the array. The constant is about two and a half

code for the randomized algorithm, we rst remove the times the one for the randomized selection algorithm
randomization and second add code for Steps 1, 2, and 3. 9 :

Recall that is the rank of the desired item i[::ir]. Af- A somewhat subtle issue is the presence of equal items
ter sorting the groups, we have their medians arranged inin the input collection. Such occurrences make the func-
the middle fth of the arrayA[" +2k::" +3k 1], and we tion SPLIT unpredictable since they could occur on either
compute the median of the medians by recursive applica- side of the pivot. An easy way out of the dilemma is to

Assumingc 10we haveT (n) cn, as required. Again
the running time is at most some constant times that of

tion of the function. make sure that the items that are equal to the pivot are
treated as if they were smaller than the pivot if they occur
int SELECT(int ~;r;i) in the rst half of the array and they are treated as if they
k=d(r ~+1)=5¢ were larger than the pivot if they occur in the second half
for j =0to k 1do ISoRrT(" + j;k;r) endfor ; of the array.

mt= SELeCT(+2k; +3k 1;b(k +1)=20);
Swap(;mY: g= SPLIT(;r); m=q " +1;

if i<m thenreturn SeLecT(:q 1) Summary. The idea of prune-and-search is very similar

to divide-and-conquer, which is perhaps the reason why

elseif i = mthenreturn q N
e some textbooks make no distinction between the two. The
else return SELECT(gq+1;ri m) L .
endif characteristic feature of prune-and-searchis that therrec

sion covers only a constant fraction of the input set. As we

Observe that the algorithm makes progress as long as therJ‘ave_ Se‘:‘fn in the analysis, this difference implies a better
are at least three items in the set, but we need special treat!UNNING iMe.
ment of the cases of one or of two items. The role of the Itis interesting to compare the randomized with the de-

median of medians is to prevent an unbalanced split of terministic version of selection:

the use of randomization leads to a simpler algorithm
but it requires a source of randomness;

upon repeating the algorithm for the same data, the
deterministic version goes through the exact same
steps while the randomized version does not;

we analyze the worst-case running time of the deter-
ministic version and the expected running time (for
the worst-case input) of the randomized version.

All three differences are fairly universal and apply to athe
algorithms for which we have the choice between a deter-
ministic and a randomized implementation.

10

4 Dynamic Programming an m-character stringA\[1::m] and ann-character string
B[1::n]. LetE(i;j) be the edit distance between the pre-

Sometimes, divide-and-conquer leads to overlapping sub- X€s of lengthi andj,, thatis, betweeA[1:i]andB[1:]].
problems and thus to redundant computations. It is not The edit distance between the complete strings is therefore

uncommon that the redundancies accumulate and causé (M:n). A crucial step towards the development of this
an exponential amount of wasted time. We can avoid &lgorithm is the following observation about the gap rep-
the waste using a simple ideaplve each subproblem fésentation of an optimal edit sequence.

only once To be able to do that, we have to add a cer-
tain amount of book-keeping to remember subproblems
we have already solved. The technical name for this de-
sign paradigm islynamic programming

PREFIX PROPERTY If we remove the last column of an
optimal edit sequence then the remaining columns
represent an optimal edit sequence for the remaining
substrings.

Edit distance. We illustrate dynamic programming us- We can easily prove this claim by contradiction: if the
ing the edit distance problem, which is motivated by ques- substrings had a shorter edit sequence, we could just glue
tions in genetics. We assume a nite set afaracters the last column back on and get a shorter edit sequence for
or letters , which we refer to as thalphabet and we the original strings.

considesstringsor wordsformed by concatenating nitely
many characters from the alphabet. Tduit distancebe-
tween two words is the minimum number of letter inser-
tions, letter deletions, and letter substitutions reqlie
transform one word to the other. For example, the edit
distance betweeROORBNdMONE¥ at most four:

Recursive formulation. We use the Pre x Property to
develop a recurrence relation f&. The dynamic pro-
gramming algorithm will be a straightforward implemen-
tation of that relation. There are a couple of obvious base
cases:

FOOD MOOD MOND MONED MONEY) _)
Erasing: we need deletions to erase a@ncharacter

A better way to display the editing process is tjap rep- string,E(i; 0) = i.
resentatiorthat places the words one above the other, with Creating: we needj insertions to create §-
a gap in the rst word for every insertion and a gap in the character stringg (0;j) = j .

second word for every deletion:
In general, there are four possibilities for the last column
F O O D i ; ;
in an optimal edit sequence.
M O N E Y

Columns with two different characters correspond to sub- :En (Si?jrt)loj:Et(?_? Iasi)e+nt1ry in the top row is empty,

stitutions. The number of editing steps is therefore the ’))
number of columns that do not contain the same character ~ Deletion: the last entry in the bottom row is empty,
twice. E@j)=E®G Lj)+1.

Substitution: both rows have characters in the last

column that are different=(i;j) = E(1;]
Prefix property. It is not dif cult to see that you cannot 1) rl ! T3 (i)

get fromFOOM MONE¥ less than four steps. However,

for longer examples it seems considerably more dif cult c ’
to nd the minimum number of steps or to recognize an E(j)= E(
optimal edit sequence. Consider for example

No action: both rows end in the same character,
1 1.

Let P be the logical propositio&[i] 6 BJj] and denote

A LGOR [T H M byjPj its indicator variablejPj = 1 if P istrue andPj =
A L T RUI ST I C 0if P is false. We can now summarize and fpgr> 0
get the edit distance as the smallest of the possibilities:
Is this optimal or, equivalently, is the edit distance betwe 1 1
ALGORITHARD ALTRUISTIGix? Instead of answering N - CEG) D+1 1
this speci ¢ question, we develop a dynamic program- E@j) = min EE\E: 1}) +11)+ iPi -

ming algorithm that computes the edit distance between

11

The algorithm. If we turned this recurrence relation di- A L I R U I S 1 1 C
rectly into a divide-and-conquer algorithm, we would have

the following recurrence for the running time: 012 34— 5 6—» 7—> 89 —10
1
T(m;n) = T(m;n 1+ T(m 1;n) A 1 12234256789
+T(m 1’n 1)+1: L 2 1 %1%2%3%4%5% 6— 7— 8
: : . - L NONCON N N NN
The solution to this recurrence is exponentiahrandn, G 3 2 1 1—2—53>54>5>6> 7> 8
which is clearly not the way to go. Instead, let us build 0 }‘ % g\g\ 2> 3> 4> 5> 6> 7> 8
anm + 1 timesn + 1 table of possible values & (i;]). [N N N N N NN
We can start by lling in the base cases, the entries in the R 5 4 3 3 3—4—5—6—> 78
0-th row and column. To Il in any other entry, we need g LoINd ' E
. : 5 4 4 3 3 458> 7
to know the values directly to the left, directly above, and Ll INVIN =
both to the left and above. If we Il the table fromtopto T 7 6 5 4 4 4 4 5— 6
bottom and from left to right then whenever we reach an H % % % £ g\ 15\ ls\ ls\ 5 5> 6
entry, the entries it depends on are already available. Lol L NN NN
M 9 8 7 6 6 6 6 6 6 6
int EDITDISTANCE(INt m;n)
for ' =0to mdo E[j; _O] = | endfor ; Figure 5: The table of edit distances between all pre xes of
for j =1to ndo E[0;j]=] endfor ; ALGORITHAMd of ALTRUISTICThe shaded area highlights the
for i=1to mdo optimal edit sequences, which are paths from the upperdeft t
for j =1to ndo the lower right corner.
Efi;j]=minfE[i;j 1]+1;E[i 1;j]1+1;
o Ei Lj 11+jAl]6 B[lig ALcoRrR | THM
endfor - A LT R UI S T1C
return E[m;n]. ALG OR | T H M

A L TRUISTIC
Since there arém+1)(n+1) entriesin the table and each

takes a constant time to compute, the total running time is They are easily recovered by tracing the paths backward,
in O(mn). from the end to the beginning. The following algorithm
recovers an optimal solution that also minimizes the num-

. ber of insertions and deletions. We call it with the lengths
Anexample. The table constructed for the conversionof ¢ ihe strings as arguments(iR; n).

ALGORITHigALTRUISTIGs shown in Figure 5. Boxed
numbers indicate places where the two strings have equal
characters. The arrows indicate the predecessors that de-
ne the entries. Each direction of arrow corresponds to a
different edit operation: horizontal for insertion, vedi

for deletion, and diagonal for substitution. Dotted diago-
nal arrows indicate free substitutions of a letter for itsel

void R(int i;j)

if i> 0or j> Othen
switch incoming arrow:
case &: R(i 1;j 1);print (A[;B[])
case # R(i 1;j);print (A[i];.)
case ! : R(i;j 1);print (;;B[]).
endswitch

endif.

Recovering the edit sequence. By construction, there

is at least one path from the upper left to the lower right _ o
corner, but often there will be several. Each such path Summary. The structure of dynamic programming is

describes an optimal edit sequence. For the example at29@in similar to divide-and-conquer, except that the sub-

hand, we have three optimal edit sequences: problems to be solved overlap. As a consequence, we get
different recursive paths to the same subproblems. To de-
A LG ORI T H M velop a dynamic programming algorithm that avoids re-
A LTRUISTIC dundant solutions, we generally proceed in two steps:

12

1. We formulate the problem recursively. In other
words, we write down the answer to the whole prob-
lem as a combination of the answers to smaller sub-
problems.

2. We build solutions from bottom up. Starting with the
base cases, we work our way up to the nal solution
and (usually) store intermediate solutions in a table.

For dynamic programming to be effective, we need a
structure that leads to at most some polynomial number
of different subproblems. Most commonly, we deal with
sequences, which have linearly many pre xes and suf xes
and quadratically many contiguous substrings.

13

5 Greedy Algorithms one activity, namelyj, (or possiblyj, if it was not re-
moved before). Eventually, we replace the entire feasible
The philosophy of being greedy is shortsightedness. Al- Schedule by the greedy schedule without decreasing the
ways go for the seemingly best next thing, always op- number of activities. Since we could have started with a
timize the presence, without any regard for the future, maX|mum_fea5|bIe sc_hedule, we conclude that the greedy
and never change your mind about the past. The greedySchedule is also maximum.
paradigm is typically applied to optimization problems. In
this section, we rst consider a scheduling problem and

second the construction of optimal codes. Binary codes. Next we consider the problem of encod-

ing a text using a string of Os and 1s.biary codemaps
each letter in the alphabet of the text to a unique string
A scheduling problem. Consider a set of activities 0f Os and 1s. Suppose for example that the letter 't' is
1;2;:::;n. Activity i starts at times; and nishes encoded as001, "h'is encoded as101, and "e'is en-

at timef; > s;. Two activitiesi andj overlap if coded as01'. Then the word “the' would be encoded as
[si;fi]\ [sj;f;]1 6 ;. The objective is to select a maxi- the concatenation of codeword90110101 This partic-
mum number of pairwise non-overlapping activities. An ular encoding is unambiguous because the cogecifix-
example is shown in Figure 6. The largest number of ac- free no codeword is pre x of another codeword. There is

C
bk =

L 1 L
ar 1 gr 1

time

Figure 6: A best schedule s e;f, but there are also others of
the same size. Figure 7: Letters correspond to leaves and codewords qumes
to maximal paths. A left edge is read as "0' and a right edge as
tivities can be scheduled by choosing activities with early “1'. The tree to the right is full and improves the code.
nish times rst. We rst sort and reindex such thak j

impliesf; fj. a one-to-one correspondence between pre x-free binary
codes and binary trees where each leaf is a letter and the
S=flg;last =1; corresponding codeword is the path from the root to that
for i=2to ndo leaf. Figure 7 illustrates the correspondence for the above
if flast <sithen 3-letter code. Being pre x-free corresponds to leaves not
S=S|[figlast=i having children. The tree in Figure 7 is not full because
endif three of its internal nodes have only one child. This is an
endfor . indication of waste. The code can be improved by replac-

ing each node with one child by its child. This changes
The running time is Q{logn) for sorting plus OA) for the above code tdU for °t', * 1' for “h', and "01' for "e".
the greedy collection of activities.

It is often di_f cult to determine how clos_e to the opti- |y ffman trees. Let w; be the frequency of the lettey
mum the solutions found by a greedy algorithm really are. in the given text. It will be convenient to refer tw; as

However, for the above scheduling problem the greedy weightof ¢; or of its external node. To get an ef -

algorithm always nds an optimum. For the proof let et code, we choose short codewords for common let-

1=y <iz<iii<igbe the.gree.d.y schedule con- o5 Suppose; is the length of the codeword far. Then
structed by the algorithm. Lgk <j2 <::1<j cheany e nymber of bits for encoding the entire text is
other feasible schedule. Singe= 1 has the earliest nish

time of any activity, we havé;, f;j,. We can therefore p = Wi i
addi to the feasible schedule and remove at most one ac- ;

tivity, namelyj ;. Among the activities that do not overlap

i1,i2 hasthe earliest nish time, henég, f;j,. We can Since j is the depth of the leafj, P is also known as the
again add to the feasible schedule and remove at most weighted external path lengtif the corresponding tree.

14

TheHuffman tredor the c; minimizes the weighted ex-
ternal path length. To construct this tree, we start with
nodes, one for each letter. At each stage of the algorithm,
we greedily pick the two nodes with smallest weights and
make them the children of a new node with weight equal
to the sum of two weights. We repeat until only one node
remains. The resulting tree for a collection of nine letters
with displayed weights is shown in Figure 8. Ties that

Tree HUFFMAN
loop = EXTRACTMIN(N);
if N = ; thenreturn
= EXTRACTMIN(N);
create node with children and
and weightw() = w()+ w();
add toN
forever.

endif ;

Straightforward implementations use an array or a linked
list and take time Qf) for each operation involving\ .
There are fewer than extractions of the minimum and
fewer thann additions, which implies that the total run-
ning time is O(2). We will see later that there are better
ways to implemeniN leading to running time G@(logn).

An inequality. We prepare the proof that the Huffman
tree indeed minimizes the weighted external path length.

Figure 8: The numbers in the external nodes (squares) are the| et T be a full binary tree with weighted external path

weights of the corresponding letters, and the ones in tlegriat
nodes (circles) are the weights of these nodes. The Huffnean t
is full by construction.

Figure 9: The weighted external path lengtif+ 15 + 18 +
12+5+15+24+27+42=173 .

arise during the algorithm are broken arbitrarily. We re-

draw the tree and order the children of a node as left and

right child arbitrarily, as shown in Figure 9.

The algorithm works with a collectioiN of nodes
which are the roots of the trees constructed so far. Ini-
tially, each leaf is a tree by itself. We denote the weight
of a node byw() and use a function erRACTMIN that

returns the node with the smallest weight and, at the samewhere

time, removes this node from the collection.

15

lengthP(T). Let (T) be the set of leaves and letand
be any two leaves with smallest weights. Then we can
construct a new tre& “with

(1) setofleaveg TH=((T) f ;

(2) w()= w()+ w(),

@) PY P w()
and are siblings.

gL g,

w(), with equality if

We now argue thaf “really exists. If and are siblings
then we construct “from T by removing and and
declaring their parent,, as the new leaf. Then

Figure 10: The increase in the depth ofs compensated by the
decrease in depth of the leaves in the subtree. of

P(TY = P(M w() w() +w() 1)
= P(M) w() w();
= ()= ()= ()+1 isthe common depth
of and . Otherwise, assumg) ()andlet be

the sibling of , which may or may not be a leaf. Exchange
and . Since the length of the path from the root to

is at least as long as the path tpthe weighted external

path length can only decrease; see Figure 10. Then do the

same as in the other case.

Proof of optimality. The optimality of the Huffman tree
can now be proved by induction.

HUFFMAN TREE THEOREM. LetT be the Huffman tree
and X another tree with the same set of leaves and
weights. TheP(T) P(X).

PROOE If there are only two leaves then the claim is obvi-
ous. Otherwise, let and be the two leaves selected by
the algorithm. Construct treds-andX with

PTY = P(T) w() w();
PXY PX) w() w():

THs the Huffman tree fon 1 leaves so we can use the
inductive assumption and ge{TY P (X 5. It follows
that

P(T) = P(TH+w()+ w()
POXH+ w()+ w()
P(X):

Huffman codesare binary codes that correspond to
Huffman trees as described. They are commonly used to
compress text and other information. Although Huffman
codes are optimal in the sense de ned above, there are
other codes that are also sensitive to the frequency of se-
guences of letters and this way outperform Huffman codes
for general text.

Summary. The greedy algorithm for constructing Huff-
man trees works bottom-up by stepwise merging, rather
than top-down by stepwise partitioning. If we run the
greedy algorithm backwards, it becomes very similar to
dynamic programming, except that it pursues only one of
many possible partitions. Often this implies that it leads
to suboptimal solutions. Nevertheless, there are problems
that exhibit enough structure that the greedy algorithm
succeeds in nding an optimum, and the scheduling and
coding problems described above are two such examples.

16

First Homework Assignment

Write the solution to each problem on a single page. The
deadline for handing in solutions is September 18.

Problem 1. (20 points). Consider two sum¥ = X +

X+ i+ XpandY = y;+yo,+ i+ yp. Givean
algorithm that nds indices andj such that swap-
ping x; with y; makes the two sums equal, that is,
X Xi+yj=Y yj+ X, ifthey exist. Analyze
your algorithm. (You can use sorting as a subroutine.
The amount of credit depends on the correctness of
the analysis and the running time of your algorithm.)

Problem 2. (20 = 10 + 10 points). Consider dis-
tinct items Xq;X2;:::;Xn Iﬁlﬂl positive weights
iz Wi = 1:0. The
weighted mediars the itemxy that satis es
1 1
wj < 0:5 and wj 05

Xi <Xk Xj =Xk

(@) Show how to compute the weighted median
of n items in worst-case time @(ogn) using
sorting.

(b) Show how to compute the weighted median in
worst-case time Q1) using a linear-time me-
dian algorithm.

Problem 3. (20 = 6 + 14 points). A game-board has
columns, each consisting of a top number, the cost of
visiting the column, and a bottom number, the maxi-
mum number of columns you are allowed to jump to
the right. The top number can be any positive integer,
while the bottom number is either 1, 2, or 3. The ob-
jective is to travel from the rst column off the board,
to the right of thenth column. The cost of a game is
the sum of the costs of the visited columns.

Assuming the board is represented in a two-
dimensional arrayB[2; n], the following recursive
procedure computes the cost of the cheapest game:

int CHEAPEST(int i)

if i>n thenreturn Oendif ;

X = B[1;i]+ CHEAPEST(i +1);

y = B[L;i]+ CHEAPEST(i +2);

z= BJ[1;i]+ CHEAPEST(i +3);

case B[2;i]=1:return X;
B[2;i]=2:return minfx;yg;
B[2;i]=3:return minfx;y;zg

endcase .

17

(a) Analyze the asymptotic running time of the pro-
cedure.

(b) Describe and analyze a more ef cient algorithm
for nding the cheapest game.

Problem 4. (20 = 10 + 10 points). Consider a set of

intervals[a;; bj] that cover the unit interval, that is,
[0; 1]is contained in the union of the intervals.

(a) Describe an algorithm that computes a mini-
mum subset of the intervals that also covers
[0; 1].

(b) Analyze the running time of your algorithm.

(For question (b) you get credit for the correctness of
your analysis but also for the running time of your

algorithm. In other words, a fast algorithm earns you
more points than a slow algorithm.)

Problem 5. (20 = 7+ 7 + 6 points). LetA[1::m] and

B[1::n] be two strings.

(&) Modify the dynamic programming algorithm
for computing the edit distance betwegrand
B for the case in which there are only two al-
lowed operations, insertions and deletions of in-
dividual letters.

(b) A (not necessarily contiguousyibsequencef
A is de ned by the increasing sequence of its
indices,1 i1 <i><:::<ikg m. Use
dynamic programming to nd the longest com-
mon subsequence @& andB and analyze its
running time.

(c) What is the relationship between the edit dis-
tance de ned in (a) and the longest common
subsequence computed in (b)?

© 00 ~NO®

SEARCHING

Binary Search Trees

Red-black Trees

Amortized Analysis

Splay Trees

Second Homework Assignment

18

6 Binary Search Trees of edges. For every node, there is a unique path from
the root to . The length of that path is thgepthof

One of the purposes of sorting is to facilitate fast search- Theheightof the tree is the maximum depth of any node.

ing. However, while a sorted sequence stored in a lin- Thepath lengthis the sum of depths over all nodes, and

ear array is good for searching, it is expensive to add and the external path lengtis the same sum restricted to the

delete items. Binary search trees give you the best of both!€aves in the tree.

worlds: fast search and fast update.

Searching. A binary search treés a sorted binary tree.
Definitions and terminology. We beginwith arecursive Ve assume each node is a record storing an item and point-
de nition of the most common type of tree used in algo- €rs to two children:
rithms. A (rooted) binary treds either empty or a node _)
(theroot) with a binary tree as left subtree and binary tree ~ StructNode fitem info; Node °; rg;
as right subtree. We store items in the nodes of the tree. typedef Node Tree .
It is often convenient to say the itenase the nodes. A) o _)
binary tree is sorted if each item is between the smaller or SOmetimes it is convenient to also store a pointer to the
equal items in the left subtree and the larger or equal items Parent, but for now we will do without. We can search in
in the right subtree. For example, the tree illustrated in @ binary search tree by tracing a path starting at the root.
Figure 11 is sorted assuming the usual ordering of English)
characters. Terms for relations between family members Node SEARCH(Tree %;item x)

such aschild, parent sibling are also used for nodes in a case %= NULL:Treturn NULL; .

tree. Every node has one parent, except the root which has Xx<%! info:return = SEARCH(%! ";x);

no parent. Aeaf or external nodés one without children; x = %! info:return %

all other nodes armternal. A node is adescendertf x>9%! info:return SEARCH(%! r;x)

if = or isadescendentofa child of Symmetri- endcase.

cally, is anancestorof if isadescendentof. The o)
subtreeof consists of all descendents of An edgeis a The running time depends on the length of the path, which
parent-child pair. is at most the height of the tree. Letbe the size. In the

worst case the tree is a linked list and searching takes time
O(n). In the best case the tree is perfectly balanced and
searching takes only time(@gn).

Insert. To add a new item is similarly straightforward:
follow a path from the root to a leaf and replace that leaf
by a new node storing the item. Figure 12 shows the tree
obtained after adding to the tree in Figure 11. The run-

Figure 11: The parent, sibling and two children of the dareno
are shaded. The internal nodes are drawn as circles while the
leaves are drawn as squares.

The sizeof the tree is the number of nodes. A binary
tree isfull if every internal node has two children. Every
full binary tree has one more leaf than internal node. To
count its edges, we can either count 2 for each internal
node or 1 for every node other than the root. Either way, Figure 12: The shaded nodes indicate the path from the root we
the total number of edges is one less than the size of theygyerse when we insevt into the sorted tree.
tree. Apathis a sequence of contiguous edges without
repetitions. Usually we only consider paths that descend ning time depends again on the length of the path. If the
or paths that ascend. Thengthof a path is the number insertions come in a random order then the tree is usually

19

close to being perfectly balanced. Indeed, the tree is thethen items is
same as the one that arises in the analysis of quicksort.

The expected number of comparisons for a (successful) 1+C(T) = ":(I +1)

search is on@-th of the expected running time of quick- - Pi i

sort, which is roughly2 Inn. B r
= 1+ Pi i

Delete. The main idea for deleting an item is the same
as for inserting: follow the path from the root to the node
that stores the item.

where ; is the depth of the node that storas C(T)
is theweighted path lengtlor the costof T. We study
the problem of constructing a tree that minimizes the cost.

To develop an example, let = 3 andp; = 3, p; =

Case 1. hasnointernal node as a child. Remove 1 ps = L. Figure 14 shows the ve binary trees with
three nodes and states their costs. It can be shown that the

Case 2. has one internal child. Make that child the

child of the parent of . @ @ ‘ @ @
Case 3. hastwo internal children. Find the rightmost @ @ @
internal node in the left subtree, remove it, and sub- @ @ @ @

stitute it for , as shown in Figure 13.

Figure 14: There are ve different binary trees of three nade
From left to right their costs aré; 2; %; Z; 2. The rst tree and
the third tree are both optimal.

\Y \% @']

— number of different binary trees witth nodes isﬁ s

which is exponential im. This is far too large to try all
possibilities, so we need to look for a more ef cient way

to construct an optimum tree.
Figure 13: Stord in and delete the node that used to stbre

Dynamic programming. We writeTij for the optimum
- - . Cd far
The analysis of the expected search time in a binary searchwe'ghted bmfrylfffh tfree E:’ a.+1; o ’SJ bCI:I fo:c 't;
tree constructed by a random sequence of insertions and©St gncpj{ = k=i Px for the total probability of the
deletions is considerably more challenging than if no dele- ittms inT{'. Suppose we know that the optimum tree
tions are present. Even the de nition of a random se- Stores itemay in its root. Then the left subtree i§
quence is ambiguous in this case. and the right subtree i§},,. The cost of the optimum
tree is therefor€) = C<*+ Cl, + p! pk. Since we
do not know which item is in the root, we try all possibili-

Optimal binary search trees. Instead of hoping the in- i€s and nd the minimum:

cremental construction yields a shallow tree, we can con- i] K1 i - _
struct the tree that minimizes the search time. We con- S irg,'(r;jfci * Chmat P PO

sider the common problem in which items have different

probabilities to be the target of a search. For example, This formula can be translated directly into a dynamic pro-
some words in the English dictionary are more commonly gramming algorithm. We use three two-dimensional ar-
searched than others and are therefore assigned a higherays, one for the sums of probabilitig®, one for the costs
probability. Leta; < a, < ::: < ap be the items and ofoptimumtreesC{,_and one for the indices of the items
pi the corresponding probabilities. To simplify the discus- stored in their rootsR}. We assume that the rst array has
sion, \ﬁe;ﬁ]ly consider successful searches and thus asalready been computed. We initialize the other two arrays
sume ;_, pi = 1. The expected number of comparisons along the main diagonal and add one dummy diagonal for
for a successful search in a binary search ffestoring the cost.

20

for k=1to ndo

Clk;k 1]=CJk;k]=0; R[k;k] =k
endfor ;

Cln+1;n]=0.

We Il the rest of the two arrays one diagonal at a time.

=2t ndo
for i=1ton “+1do
j=i+" L, C[i;jl=1;
for k=1ito j do
cost= C[i;k 1]+ C[k+1;j]
+pli;j] plk;K];
if cost< C[i;j]then
Cli;j]1= cost RJi;j]=k
endif
endfor
endfor
endfor .

for

The main part of the algorithm consists of three nested
loops each iterating through at mastalues. The running
time is therefore in @n3).

Example. Table 1 shows the partial sums of probabil-
ities for the data in the earlier example. Table 2 shows

Table 1: Six times the partial sums of probabilities usedhzy t
dynamic programming algorithm.

the costs and the indices of the roots of the optimum trees
computed for all contiguous subsequences. The optimum

(6cfl1[2]3] [R1]2]3]
TJ0[2]4 T[[1]1]1
2 01 2 22
3 0 3 3

Table 2: Six times the costs and the roots of the optimum trees

tree can be constructed froras follows. The root stores
the item with indexR[1; 3] = 1. The left subtree is there-
fore empty and the right subtree stoi@s az. The root

of the optimum right subtree stores the item with index
R[2; 3] = 2. Again the left subtree is empty and the right
subtree consists of a single node storéag

21

Improved running time. Notice that the arrafR in Ta-
ble 2 is monotonic, both along rows and along columns.
Indeed it is possible to prove! ~* R} in every row and
R! Ri{,, inevery column. We omit the proof and show
how the two inequalities can be used to improve the dy-
namic programming algorithm. Instead of trying all roots
fromi throughj we restrict the innermogor -loop to

for k=R[i;j 1]to R[i+1;j]do
The monotonicity property implies that this change does
not alter the result of the algorithm. The running time of a
single iteration of the outdpr -loop is now

n

Utfn) = (RL, RIT'+1):
i=1
Recallthaj = i+ ° 1and note that most terms cancel,
giving
Ufn) = Ri_m, Ry +(n ~+1)
2n:

In words, each iteration of the outéar -loop takes only
time O(), which implies that the entire algorithm takes
only time OQ?).

7 Red-Black Trees

NS
Binary search trees are an elegant implementation of the (b (a)
dictionarydata type, which requires support for
item SEARCH (item), 0
void INSERT(item), ab c .
void DELETE (item), (@ (o)

and possible additional operations. Their main disadvan-
tage is the worst case timé n) for a single operation. Figure 16: Transforming a 2-3-4 tree into a binary tree. Bold
The reasons are insertions and deletions that tend to getedges are called red and the others are called black.

the tree unbalanced. It is possible to counteract this ten-
dency with occasional local restructuring operations and

to guarantee logarithmic time per operation. The number of black edges on a maximal descending path

is theblack heightdenoted abh(%. When we transform

a 2-3-4 tree into a binary tree as in Figure 16, we get a red-
2-3-4 trees. A special type of balanced tree is the 2-3-4 black tree. The result of transforming the tree in Figure 15
tree. Each internal node stores one, two, or three items
and has two, three, or four children. Each leaf has the
same depth. As shown in Figure 15, the items in the in-
ternal nodes separate the items stored in the subtrees and
thus facilitate fast searching. In the smallest 2-3-4 triee o

Figure 17: A red-black tree obtained from the 2-3-4 tree ig-Fi
ure 15.

is shown in Figure 17.

Figure 15: A 2-3-4 tree of height two. All items are stored in

internal nodes. HEIGHT LEMMA. A red-black tree witm internal nodes

has height at mostlog,(n + 1) .
heighth, every internal node has exactly two children, so
we have2" leaves an@" 1internal nodes. Inthe largest ProoE The number of leaves i8 + 1. Contract each
2-3-4 tree of heighh, every internal node has four chil- red edge to get a 2-3-4 tree with+ 1 leaves. Its height

dren, so we havd" leaves an¢4" 1)=3internalnodes. ish log,(n +1). We havebh(% = h, and by Rule
We can store a 2-3-4 tree in a binary tree by expanding a (1) the height of the red-black tree is at m@sh (%
node withi > litems and +1 childrenintoi nodeseach 2log,(n +1).

with one item, as shown in Figure 16.

. Rotations. Restructuring a red-black tree can be done
Red-black trees. Suppose we color each edge of a bi- ity only one operation (and its symmetric version)oa
nary search tree either red or black. The color is conve- (a4ion that moves a subtree from one side to another, as

niently stored in the lower node of the edge. Such a edge-ghown in Figure 18. The ordered sequence of nodes in the
colored tree is aed-black treaf left tree of Figure 18 is

(1) there are no two consecutive red edges on any de- ::::ordefA): ; orde(B): ; orde(C);::::
scending path and every maximal such path ends with Y N v Y
a black edge; and this is also the ordered sequence of nodes in the right

(2) all maximal descending paths have the same numbertree. In other words, a rotation maintains the ordering.
of black edges. Function 4G below implements the right rotation:

22

Zig
right rotation

left rotation
Zag

Figure 18: From left to right a right rotation and from riglat t
left a left rotation.

Node Zig(Node)
assert 6 NuLLand = ! "6 NULL;
' "= 1 r; ! r= retun

Function ZaG is symmetric and performs a left rotation.
Occasionally, it is necessary to perform two rotations in

sequence, and it is convenient to combine them into a sin-

gle operation referred to asdouble rotation as shown
in Figure 19. We use a functioni@ZAG to implement a

double
right rotation

ZigZag

Figure 19: The double right rotation atis the concatenation of
a single left rotation at and a single right rotation at.

double right rotation and the symmetric functioa@Z1G
to implement a double left rotation.

Node ZicZaGg(Node)

I "= 2Zac(!) return ZIG().
The double right rotation is the composition of two single
rotations: 4GZAG() = ZIG() ZAG(). Remember
that the composition of functions is written from right to
left, so the single left rotation of precedes the single right
rotation of . Single rotations preserve the ordering of
nodes and so do double rotations.

Insertion. Before studying the details of the restructur-

2, we repair the two red edges in sequence by a single ro-
tation of 7 (B). After adding 5, we promote 4 (C), and after
adding 6, we do a double rotation of 7 (D).

Figure 20: Sequence of red-black trees generated by ingerti
the items 10, 7, 13, 4, 2, 5, 6 in this sequence.

An itemx is added by substituting a new internal node
for a leaf at the appropriate position. To satisfy Rule (2)
of the red-black tree de nition, color the incoming edge
of the new node red, as shown in Figure 21. Start the

Figure 21: The incoming edge of a newly added node is always
red.

adjustment of color and structure at the pareof the new
node. We state the properties maintained by the insertion
algorithm as invariants that apply to a nod&raced by the
algorithm.

INVARIANT |I. The only possible violation of the red-
black tree properties is that of Rule (1) at the node
, and if has a red incoming edge then it has ex-
actly one red outgoing edge.

Observe that Invariant | holds right after addirg We
continue with the analysis of all the cases that may arise.

ing algorithms for red-black trees, we look at the trees that The local adjustment operations depend on the neighbor-
arise in a short insertion sequence, as shown in Figure 20.hood of .

After adding 10, 7, 13, 4, we have two red edges in se-

guence and repair this by promoting 10 (A). After adding

23

Case 1. Theincoming edge of is black. Done.

Case 2. Theincoming edge of is red. Let be the !
parentof and assume is left child of . %ﬂ vﬂ
Case 2.1. Both outgoing edges of are red, as

in Figure 22. Promote. Let be the parent of
and recurse. Figure 24: Deletion of node. The dashed edge counts as two

black edges when we compute the black depth.

% o " Note that Invariant D holds right after we remove We
}O\ v now present the analysis of all the possible cases. The ad-
justment operation is chosen depending on the local neigh-
borhood of .

Figure 22: Promotion of . (The colors of the outgoing edges of

be the oth d). . . .
may be the other way round) Case 1. Theincoming edge of is black. Done.

Case 2.2. Only one outgoing edge of is red, Case 2. The incoming edge of is double-black. Let
namely the one from to . be the parent and the sibling of . Assume is
Case 2.2.1. The left outgoing edge of is left child of and note that is internal.

red, as in Figure 23 to the left. Right rotate Case 2.1. Theedgefrom to is black.
. Done.

Case 2.1.1. Both outgoing edges of are
black, as in Figure 25. Demote Recurse

U v " . for =
v o u v Ty U
o
'J/

Figure 23: Right rotation of to the left and double right rotation % K
of tothe right.

: . Figure 25: Demotion of .
Case 2.2.2. The right outgoing edge of

is red, as in Figure 23 to the right. Double

right rotate . Done. Case 2.1.2. The right outgoing edge of

is red, as in Figure 26 to the left. Change
the color of that edge to black and left ro-

Case 2 has a symmetric case where left and right are in-
tate . Done.

terchanged. An insertion may cause logarithmically many
promotions but at most two rotations.

1]
Deletion. First nd the node that is to be removed. If %H%H M
\

necessary, we substitute the inorder successor arwe
can assume that both children ofare leaves. If is last

in inorder we substitute symmetrically. Replacéiy a
leaf , as shown in Figure 24. If the incoming edge o

red then change it to black. Otherwise, remember the in-
coming edge of as “double-black’, which counts as two
black edges. Similar to insertions, it helps to understand

Figure 26: Left rotation of to the left and double left rotation
of to the right.

Case 2.1.3. The right outgoing edge of

the deletion algorithm in terms of a property it maintains. is black, as in Figure 26 to the right.
Change the color of the left outgoing edge
INVARIANT D. The only possible violation of the red- to black and double left rotate. Done.
black tree properties is a double-black incoming edge Case 2.2. Theedgefrom to isred, asin Fig-
of . ure 27. Left rotate . Recurse for .

24

Figure 27: Left rotation of .

Case 2 has a symmetric case in whids the right child of

. Case 2.2 seems problematic because it recurses without
moving any closer to the root. However, the con gura-
tion excludes the possibility of Case 2.2 occurring again.
If we enter Cases 2.1.2 or 2.1.3 then the termination is im-
mediate. If we enter Case 2.1.1 then the termination fol-
lows because the incoming edge ofs red. The deletion
may cause logarithmically many demotions but at most
three rotations.

Summary. The red-black tree is an implementation
of the dictionary data type and supports the operations
search, insert, delete in logarithmic time each. An inser-
tion or deletion requires the equivalent of at most three
single rotations. The red-black tree also supports nding
the minimum, maximum and the inorder successor, prede-
cessor of a given node in logarithmic time each.

25

8 Amortized Analysis

Amortization is an analysis technique that can in uence
the design of algorithms in a profound way. Later in this

course, we will encounter data structures that owe their
very existence to the insight gained in performance due to

amortized analysis.

Binary counting. We illustrate the idea of amortization
by analyzing the cost of counting i ry. Think of an
integer as a linear array of bita,= ;_, A[i] 2. The
following loop keeps incrementing the integer storeéin

loop i=0;
while A[i] =1 do A[i] =0; i++ endwhile ;
Ali]l=1

forever

We de ne thecostof counting as the total number of bit

total number of bit changes is therefore

L) | B F_j—_l

T(n) (ti +1) (n+1)

2°

i=0 j=1

We use index transformation to show that the sum on the
rightis less than 2:

L 1 | I |
L —
2 a1
j=1 j=1
= 2 _i N
j j—1
jzl2J jzl2J
= 2:

Hence the cost i (n) < 2(n +1). Theamortized cost
per operation isTEI—”), which is about 2.

changes that are needed to increment the number one by

one. What is the cost to count from O & Figure 28

shows that counting from 0 to 15 requires 26 bit changes.

Sincen takes onlyl + blog, nc bits or positions inA,

5 0000000000000000
4 0000000000000000
s 0000000f1111111
2 121/g000[8111d
1 110 110 o !
0 @ [o]1 @ @

Figure 28: The numbers are written vertically from top to-bot
tom. The boxed bits change when the number is incremented.

a single increment does at mdst log, n steps. This
implies that the cost of counting from O tois at most
nlog, n +2n. Even though the upper bounda# log, n

is almost tight for the worst single step, we can show that
the total cost is much less thantimes that. We do this
with two slightly different amortization methods referred
to as aggregation and accounting.

Aggregation. The aggregation method takes a global
view of the problem. The pattern in Figure 28 suggests
we de ne by equal to the number of 1s ang equal to
the number of trailing 1s in the binary notationiof Ev-
ery other number has no trailing 1, every other number
of the remaining ones has one trailing 1, etc. Assuming
n = 2% 1, we therefore have exactly 1 trailing 1s
for 273 = (n+1) =21 integers between O amd 1. The

26

Accounting. The idea of the accounting method is to
charge each operation what we think its amortized cost is.
If the amortized cost exceeds the actual cost, then the sur-
plus remains as a credit associated with the data structure.
If the amortized cost is less than the actual cost, the accu-
mulated credit is used to pay for the cost over ow. De ne
the amortized cost of a bit chan@e! 1 as $2 and that

of 1! 0as $0. When we change 0 to 1 we pay $1 for
the actual expense and $1 stays with the bit, which is now
1. This $1 pays for the (later) cost of changing the 1 to 0.
Each increment has amortized cost $2, and together with
the money in the system, this is enough to pay for all the
bit changes. The cost is therefore at marst

We see how a little trick, like making ti®! 1 changes
pay forthel! 0changes, leads to a very simple analysis
that is even more accurate than the one obtained by aggre-
gation.

Potential functions. We can further formalize the amor-
tized analysis by using a potential function. The idea is
similar to accounting, except there is no explicit credit
saved anywhere. The accumulated credit is an expres-
sion of the well-being or potential of the data structure.
Let ¢j be the actual cost of thieth operation and; the
data structure after thieth operation. Let ; = (Dj)

be the potential oD;, which is some numerical value
depending on the concrete application. Then we de ne
a = G+ i—1 as theamortized cosbf thei-th

operation. The sum of amortized costaobperations is Case 1. has ve children and a non-saturated sibling
r ! r ! to its left or right. Move one child from to that
a = G+ 1) sibling, as in Figure 29.
i=1 i=1
1
= G+ n o $6 $1 $3 $0
i=1 —
We aim at choosing the potep%ﬁ—isuc =0 and
n 0 because then we get a; ci. In words,

the sum of amortized costs covers the sum of actual costs.Figure 29: The over owing node gives one child to a non-

To apply the method to binary counting we de ne the po- saturated sibling.

tential equal to the number of 1s in the binary notation,
i = bj. It follows that

Case 2. has ve children and no non-saturated sib-
)) _ ling. Split into two nodes and recurse for the parent
i = b b of , asin Figure 30. If has no parent then create a
= (b1 tia+1) b new root whose only children are the two nodes ob-

= 1 tj-1: tained from .

The actual cost of thé-th operation isc;i = 1 + tj—1, $3 $6
and the amortized cost i = cj + i—1 = 2.
%VGI_O_—_I 0 and | 0 as desired, and therefore $6 $0 $
Ci a; = 2n, which is consistent with the analysis -
of binary counting with the aggregation and the account-
ing methods.
Figure 30: The over owing node is split into two and the pdren

2-3-Atrees. As amore complicated application of amor- s treated recursively.

tization we consider 2-3-4 trees and the cost of restructur-

ing them under insertions and deletions. We have seen

2-3-4 trees earlier when we talked about red-black trees. Deleting a key is done is a similar fashion, although there

A set of keys is stored in sorted order in the internal nodes We have to battle with nodesthat have too few children

of a 2-3-4 tree, which is characterized by the following ratherthantoo many. Lethave only one child. We repair

rules: Rule (1) by adopting a child from a sibling or by merging
with a sibling. In the latter case the parent olboses a

child and needs to be visited recursively. The two opera-

(1) eachinternalnodeh&s d 4 children and stores ’ . De v
tions are illustrated in Figures 31 and 32.

d 1keys;
(2) all leaves have the same depth.

$4 $1

As for binary trees, being sorted means that the left-to-
right order of the keys is sorted. The only meaningful def-
inition of this ordering is the ordered sequence of the rst
subtree followed by the rst key stored in the root followed
by the ordered sequence of the second subtree followed byFigure 31: The under owing node receives one child from a sib
the second key, etc. ling.

To insert a new key, we attach a new leaf and add the key
to the parent of that leaf. All is ne unless over ows

because it now has ve children. If it does, we repair the
violation of Rule (1) by climbing the tree one node at a
time. We call an internal noden-saturatedf it has fewer
than four children.

27

Amortized analysis. The worst case for inserting a new
key occurs when all internal nodes are saturated. The in-
sertion then triggers logarithmically many splits. Sym-
metrically, the worst case for a deletion occurs when all

$0 $1

Figure 32: The under owing node is merged with a sibling and
the parent is treated recursively.

internal nodes have only two children. The deletion then
triggers logarithmically many mergers. Nevertheless, we
can show that in the amortized sense there are at most a
constant number of split and merge operations per inser-
tion and deletion.

We use the accounting method and store money in the
internal nodes. The best internal nodes have three children
because then they are exible in both directions. They
require no money, but all other nodes are given a posi-
tive amount to pay for future expenses caused by split and
merge operations. Speci cally, we store $4, $1, $0, $3,
$6 in each internal node with 1, 2, 3, 4, 5 children. As il-
lustrated in Figures 29 and 31, an adoption moves money
only from to its sibling. The operation keeps the total
amount the same or decreases it, which is even better. As
shown in Figure 30, a split frees up $5 fronand spends
at most $3 on the parent. The extra $2 pay for the split
operation. Similarly, a merger frees $5 from the two af-
fected nodes and spends at most $3 on the parent. This
is illustrated in Figure 32. An insertion makes an initial
investment of at most $3 to pay for creating a new leaf.
Similarly, a deletion makes an initial investment of at most
$3 for destroying a leaf. If we char@® for each split and
each merge operation, the money in the system suf ces to
cover the expenses. This implies that foinsertions and
deletions we get a total of at mo%l splitand merge oper-
ations. In other words, the amortized number of split and
merge operations is at mo%t

Recall that there is a one-to-one correspondence be-
tween 2-3-4 tree and red-black trees. We can thus trans-
late the above update procedure and get an algorithm for
red-black trees with an amortized constant restructuring
cost per insertion and deletion. We already proved that for
red-black trees the number of rotations per insertion and
deletion is at most a constant. The above argument im-
plies that also the number of promotions and demotions is
at most a constant, although in the amortized and not in
the worst-case sense as for the rotations.

28

9 Splay Trees Function $LAY for the case the search iterrs less than
the item in the root.

Splay trees are similar to red-black trees except that they

guarantee good shape (small height) only on the average. If X< %! infothen = %! =
They are simpler to code than red-black trees and have the ~ If X< ! infothen
additional advantage of giving faster access to items that b= SpLav(boax);
are more frequently searched. The reason for both is that return - ZIGZIG(%

elseif x> | infothen

splay trees are self-adjusting. ' S (1)
' r=SpPLAY(! rXx);

return ZIGZAG(%
Self-adjusting binary search trees. Instead of explic- else
itly maintaining the balance using additional information return - ZiG(%
(such as the color of edges in the red-black tree), splay endif
trees maintain balance implicitly through a self-adjugtin
mechanism. Good shape is a side-effect of the operations!f X is stored in one of the children étthen it is moved
that are app“ed These Operations are app“ed prjley- to the root by a Single rotation. OtherWise, itis Splayed
ing a node, which means moving it up to the root of the recursively to the third level and moved to the root either
tree, as illustrated in Figure 33. A detailed analysis will by @ double or a roller-coaster rotation. The number of
rotation depends on the length of the path fré6io x.
Speci cally, if the path iS edges long ther is splayed in
bi=2c double and roller-coaster rotations and zero or one
single rotation. In the worst case, a single splay operation
takes almost as many rotations as there are nodes in the
tree. We will see shortly that the amortized number of
rotations is at most logarithmic in the number of nodes.

Figure 33: The node storing 1 is splayed using three sindé ro

tions Amortized cost. Recall that the amortized cost of an op-

eration is the actual cost minus the cost for work put into
improving the data structure. To analyze the cost, we use a
potential function that measures the well-being of the data
structure. We need de nitions:

reveal that single rotations do not imply good amortized
performance but combinations of single rotations in pairs
do. Aside from double rotations, we usaller-coaster
rotationsthat compose two single left or two single right . . .
rotations, as shown in Figure 35. The sequence of the two theS|zes() is the number of descendents of noden-
single rotations is important, namely rst the higher then cluding ,

the lower node. Recall thatiZ() performs a singleright ~ thebalance () istwice the oor of the binary logarithm

rotation and returns the new root of the rotated subtree. of the size, () = 2blog, s()c,
The roller-coaster rotation to the right is then thepotential ~ of a tree or a collectipa-oftrees is the sum
of balances over all nodess (),
Node ZicZic(Node) theactual costc; of thei-th splay operation is 1 plus the
return ZIG(Z16(). number of single rotations (counting a double or

roller-coaster rotation as two single rotations).

theamortized cost; of thei-th splay operation is; =
G+t i i—1-

Function ZAGZAG is symmetric, exchanging left and
right, and functions --ZAG and ZAGZIG are the two
double rotations already used for red-black trees.

We have (=0 forthe empty tree and; 0in general.
This implies that thelﬁl, aq{u_al-‘:ost does notleﬁepd the

Splay. A splay operation nds anitem and uses rotations _
total amortized cost, c; = ai nt o aj.

to move the corresponding node up to the root position.
Whenever possible, a double rotation or a roller-coaster To get a feeling for the potential, we computefor
rotation is used. We dispense with special cases and showthe two extreme cases. Note rst that the integral of the

29

]
pafural logarithm is Inx = xInx x and therefore Single rotation. The amortized cost of a single rotation
log, x = xlog,x x=In2. In the extreme unbal- shown in Figure 34 is 1 for performing the rotation plus
anced case, the balance of fhth node from the bottom the change in the potential:
is 2blog, i c and the potential is
% P a =1+ O+) () ()

1 _ 1+30 () ()
2 blog,ic = 2nlog,n O(n):
i=1 because {) ()and () %).

In the balanced case, we boundrom above by2U(n),
whereU(n) =2 U(3)+log , n. We prove that)(n) < 2n
for the case when = 2. Consider the perfectly balanced
tree withn leaves. The height of the treeks= log, n.
We encode the terrfog, n of the recurrence relation by
drawing the hook-like path from the root to the right child
and then following left edges until we reach the leaf level. Figure 34: The size of decreases and that ofincreases from
Each internal node encodes one of the recursively surfac-before to after the rotation.

inglog-terms by a hook-like path starting at that node. The

paths are pairwise edge-disjoint, which implies that their

total length is at most the number of edges in the tree, Roller-coaster rotation. The amortized cost of a roller-

n v

whichis2n 2. coaster rotation shown in Figure 35 is
a = 2+)+)+)
Investment. The main part of the amortized time analy- () () ()
sis is a detailed study of the three types of rotations: sin- 2+2[1) O]
gle, roller-coaster, and double. We writ¢) for the bal-
ance of a node before the rotation and'{) for the bal- because {) () %)), and () ().

ance after the rotation. Letbe the lowest node involved We distinguish two cases to prove tlaais bounded from
in the rotation. The goal is to prove that the amortized above by3[') ()]. In both cases, the drop in the
cost of a roller-coaster and a double rotation is at most

3[) ()] each, and that of a single rotation is at K H v

mostl+3[¥) ()] Summing these terms over the H v K H
rotations of a splay operation gives a telescoping series in v
which all terms cancel except the rst and the last. To this

we add 1 for the at most one single rotation and another 1

for the constant cost in de nition of actual cost.

_ _ Figure 35: If in the middle tree the balance ofs the same as
INVESTMENT LEMMA. The amortized cost of splaying a the balance of then by the Balance Lemma the balance a$
node in atree%s at mos2 +3[(% ()] less than that common balance.

Before looking at the details of the three types of rota- potential pays for the two single rotations.

tions, we prove that if two siblings have the same balance ase ¢)> (). The difference between the balance

tbhein their common .p?rent h;}s. a larger i)hal?r;ﬁe.bBlecausef of before and after the roller-coaster rotation is at
alances are even integers this means that the balance o least 2. Henca 3[{) Ol

the parent exceeds the balance of its children by at least 2.

Case)= ()= : Thenthe balances of nodes
BALANCE LEMMA. If has children; and () = and in the middle tree in Figure 35 are also equal
()= then () +2. to . The Balance Lemma thus implies that the bal-
ance of in that middle tree is at most 2. But
PROOF By de nition () = 2blog, s()c and therefore since the balance of after the roller-coaster rotation
s() 2P’2. Wehaves()=1+ s()+ s() 21+B/2 is the same as in the middle tree, we ha¥g) <
and therefore () +2. Hencea 0=3[() ()]

30

Double rotation. The amortized cost of a double rota- the increase in the potential, which we denote &5

tion shown in Figure 36 is Recall that the potential of a collection of trees is the sum
of the balances of all nodes. Splitting the tree decreases
a = 2+ ")+)+) the number of descendents and therefore the balance of
() () () the root, which implies that ™ < 0. It follows that
2+ %))] the amortized cost of a split operation is less than that of a
splay operation and therefore i Q%) .
because {) ()and) (). We again dis- Two splay trees can bigined into one if all items in

tinguish two cases to prove thais bounded from above gne tree are smaller than all items in the other tree, as il-

by3[{) ()] Inbothcases, the dropin the potential |ystrated in Figure 38. The cost for splaying the maximum
pays for the two single rotations.

Case X)> (). The difference is at least 2, which ()
impliesa 3[¥) ()], as before. A A .

Case)= ()= .Then ()= ()= .We AA

have ¥)< %)or ¥)< X)bytheBalance , , , ,
Lemma. Henca 0 = 3] Q)). Figure 38: We rst splay the maximum in the tree with the

smaller items and then link the two trees.

K v inthe rsttreeis 0 (%)). The potential increase caused
by linking the two trees is

! o - 2blog,(s(%) + s(%))c
2log, s(%) + 2log, s(%):

The amortized cost of joining is thug(Q(%) + (%)).

To insert a new item X, we split the tree. Ik is al-
ready in the tree, we undo the split operation by linking
the two trees. Otherwise, we make the two trees the left
and right subtrees of a new node storingThe amortized

Dictionary operations. Insummary, we showed thatthe ¢ost for splaying is O((%). The potential increase caused
amortized cost of splaying a noden a binary searchtree py jinking is

with root%s atmostL+3[(% ()]. We now use this
result to show that splay trees have good amortized perfor- H 2blog,(s(%) + s(%) +1) c
mance for all standard dictionary operations and more. - (%:

Figure 36: In a double rotation, the sizes ofand decrease
from before to after the operation.

To accessan item we rst splay it to the root and return
the root even if it does not contain The amortized cost
isO((%). To deletean item, we splay it to the root, remove the
root, and join the two subtrees. Removixgecreases the
potential, and the amortized cost of joining the two sub-
trees is at most O(%). This implies that the amortized
cost of a deletion is at most(O(%) .

The amortized cost of an insertion is thué ©@%)).

Given an itemx, we cansplit a splay tree into two,
one containing all items smaller than or equaktand the
other all items larger thaw, as illustrated in Figure 37.
The amortized cost is the amortized cost for splaying plus

Weighted search. A nice property of splay trees not
shared by most other balanced trees is that they automat-
- A ically adapt to biased search probabilities. It is platesibl
that this would be the case because items that are often
accessed tend to live at or near the root of the tree. The
Figure 37: After splaying to the root, we split the tree by un- analysis is somewhat involved and we only state the re-
linking the right subtree. sult. Each item or node has a positive weigh¢,) > 0,

31

1 .
and we deneW = w(). We have the following
generalization of the Investment Lemma, which we state
without proof.

WEIGHTED INVESTMENT LEMMA. The amortized cost
of splaying a node in a tree with total weighiv
is at mos® + 3log,(W=w()).

It can be shown that this result is asymptotically best pos-
sible. In other words, the amortized search time in a splay
tree is at most a constant times the optimum, which is
what we achieve with an optimum weighted binary search
tree. In contrast to splay trees, optimum trees are expen-
sive to construct and they require explicit knowledge of
the weights.

32

Second Homework Assignment

Write the solution to each problem on a single page. The
deadline for handing in solutions is October 02.

Problem 1. (20 = 12 + 8 points). Consider an array
A[1::n] for which we know thatA[1] A[2] and
A[n 1] A[n]. We say that is alocal minimumif
Ali 1] AJi] A[i +1]. Note thatA has at least
one local minimum.

(a) We can obviously nd a local minimum in time
O(n). Describe a more ef cient algorithm that
does the same.

(b) Analyze your algorithm.

Problem 2. (20points). Avertex covefor a tree is a sub-
setV of its vertices such that each edge has at least
one endpointiV. It is minimumif there is no other
vertex cover with a smaller number of vertices. Given
a tree withn vertices, describe an(@)-time algo-
rithm for nding a minimum vertex cover. (Hint: use
dynamic programming or the greedy method.)

Problem 3. (20points). Consider a red-black tree formed
by the sequential insertion af> 1items. Argue that
the resulting tree has at least one red edge.

[Notice that we are talking about a red-black tree
formed by insertions. Without this assumption, the
tree could of course consist of black edges only.]

Problem 4. (20 points). Prove tha2n rotations suf ce to
transform any binary search tree into any other binary
search tree storing the samétems.

Problem5. (20 = 5+5+ 5+ 5 points). Consider a
collection of items, each consisting of a key and a
cost. The keys come from a totally ordered universe
and the costs are real numbers. Show how to maintain
a collection of items under the following operations:

(&) AbD(k;c): assuming no item in the collection
has keyk yet, add an item with kek and cost
cto the collection;

(b) ReEmovE(k): remove the item with kel from
the collection;

(c) Max(ky;ks): assumingky k2, report the
maximum cost among all items with kels2
[k]_; kz]

33

(d) CouNT(Cy;Cp): assuminge; €, report the
number of items with cost 2 [c;; ¢2];

Each operation should take at mostd@@(n) time in
the worst case, whereis the number of items in the
collection when the operation is performed.

Il PRIORITIZING

10 Heaps and Heapsort

11 Fibonacci Heaps

12 Solving Recurrence Relations
Third Homework Assignment

34

10 Heaps and Heapsort

to the ranks of both its children. As a consequence, the
root contains the item with smallest rank.

A heap is a data structure that stores a set and allows fast \We store the nodes of the tree in a linear array, level

access to the item with highest priority. It is the basis of

a fast implementation of selection sort. On the average,

this algorithm is a little slower than quicksort but it is not
sensitive to the input ordering or to random bits and runs
about as fast in the worst case as on the average.

Priority queues. A data structure implements tipeior-
ity queueabstract data type if it supports at least the fol-
lowing operations:

void INSERT(item),
item FINDMIN (void),
void DELETEMIN (void).

The operations are applied to a set of items with priori-
ties. The priorities are totally ordered so any two can be
compared. To avoid any confusion, we will usually refer
to the priorities as ranks. We will always use integers as
priorities and follow the convention that smaller ranks-rep

resent higher priorities. In many applicationsNBEMIN

and DELETEMIN are combined:

void EXTRACTMIN(void)
r = FINDMIN; DELETEMIN; return r.

Function XTRACTMIN removes and returns the item
with smallest rank.

Heap. A heap is a particularly compact priority queue.
We can think of it as a binary tree with items stored in the
internal nodes, as in Figure 39. Each level is full, except

Figure 39: Ranks increase or, more precisely, do not deereas
from top to bottom.

possibly the last, which is lled from left to right until
we run out of items. The items are storedhi@eap-order
every node has a rank larger than or equal to the rank of
its parent. Symmetrically, has a rank less than or equal

35

by level from top to bottom and each level from left to
right, as shown in Figure 40. The embedding saves ex-

1 2 3 4 5 6 7 8 9 10 11 12
|2 5] 7]6]9]8[19 8 7/1d1913

- o

Figure 40: The binary tree is layed out in a linear array. T r
is placed inA[1], its children follow inA[2] andA[3], etc.

plicit pointers otherwise needed to establish parentdchil
relations. Speci cally, we can nd the children and par-
ent of a node by index computation: the left childAdi]

is A[2i], the right child isSA[2i + 1], and the parent is
A[bi=2c]. The item with minimum rank is stored in the
rst element:

item FINDMIN(int n)
assert n 1; return A[1]

Since the index along a path at least doubles each step,

paths can have length at mdsg, n.

Deleting the minimum. We rst study the problem of
repairing the heap-order if it is violated at the root, as
shown in Figure 41. Lenh be the length of the array. We

Figure 41: The root is exchanged with the smaller of its two
children. The operation is repeated along a single patt tinati
heap-order is repaired.

repair the heap-order by a sequence of swaps along a sin-
gle path. Each swap is between an item and the smaller of
its children:

void SIFT-DN(int i; n) In the worst case, theth item moves up all the way to

if 2i nthen t t. The number of exchanges is therefore at most
k =argminfA[2i];Al2i +1]g i=1 100, i nlog, n. The upper bound is asymptot-
if A[k]<A[i]then Swar(i;k); ically tight because half the terms in the sum are at least
SIFT-DN(k; n) log, 3 =log,n 1. Itisalso possible to construct the ini-
endif tial heap in time Of) by building it from bottom to top.
endif . We modify the rst step accordingly, and we implement

the second step to rearrange the items in sorted order:
Here we assume th&t[n + 1] is de ned and larger than

A[n]. Since a path has at mdsg, n edges, the time to re- void HEAPSORT(int n)
pair the heap-order takes time at mogtdg n). To delete for i = ndownto 1do SIFT-DN(i;n) endfor ;
the minimum we overwrite the root with the last element, for i = ndownto 1do
shorten the heap, and repair the heap-order: SwAP(i; 1); SIFT-DN(L;i 1)
endfor .

void DELETEMIN(int n)

A[ll=A[n]; n : SIFT-DN(1; n). At each step of the rsfor -loop, we consider the sub-
tree with rootA[i]. At this moment, the items in the left

Instead of the variable that storaswe pass a pointer to and right subtrees rooted &Af2i] andA[2i + 1] are al-

that variable, n, in order to use it as input and output ready heaps. We can therefore use one call to function

parameter. SIFT-DN to make the subtree with rodt[i] a heap. We
will prove shortly that this bottom-up construction of the
]] o S heap takes time only @j. Figure 42 shows the array

Inserting. Consider repairing the heap-order if itis vio- 4fer each iteration of the secoridr -loop. Note how

lated at the last positio_n_of the heap. In _this case, tr_le item the heap gets smaller by one element each step. A sin-
moves up the heap until it reaches a position where its rank

is at least as large as that of its parent.

2] 5] 7] 6] 9] 8[15] 8] 71017 13

void SIFT-uP(int i)
if i 2then k= bi=2c; (1] 7/ o] 8 15| 8|Blao]2] 2
if Ali]<Al[k]then Swapr(i; k); (®|@] 7](8] 9] 8]15/12[13]10 5 2
SIFT-UP(K
endif (k) (@|@)] 7]a0] 9] 8[15/12]13] 6 5 2
endif . (@] 8(8)10] 9]a3[15]12] 7 6 5 2

(®](9)] 8[10[a2]13]15] 7 7 6 5 2

An item is added by rst expanding the heap by one ele-

ment, placing the new item in the position that just opened (®] 9a3[10]12/a5/ 8 7 7 6 5 2
up, and repairing the heap-order.
(9]10/13]@5]12]8 8 7 7 6 5 2

void INSERTint n; item x) 9
n++ ; A[n] = x; SIFT-UP(n).
13|10 9

A heap supports IKDMIN in constant time andNSERT @[15]12 10 9
and DELETEMIN in time O(log n) each.

[ee]

8 7 7 6 5 2

[ee]

8 7 7 6 5 2

[ee]

8 7 7 6 5 2

45]131210 9 8 8 77 6 5 2

Sorting. Priority queues can be used for sorting. The Eigure 42: Each step moves the last heap element to the rdot an
rst step throws all items into the priority queue, and the thus shrinks the heap. The circles mark the items involvetién
second step takes them out in order. Assuming the itemssift-down operation.

are already stored in the array, the rst step can be done

by repeated heap repair: gle sift-down operation takes time(log n), and in total
HEAPSORT takes time @nlogn). In addition to the in-
for i=1to ndo SIFT-UP(i) endfor . put array, HHAPSORT uses a constant number of variables

36

and memory for the recursion stack used byTSDN.

We can save the memory for the stack by writing func-
tion SIFT-DN as an iteration. The sort can be changed to
non-decreasing order by reversing the order of items in the
heap.

Analysis of heap construction. We return to proving
that the bottom-up approach to constructing a heap takes
only O(n) time. Assuming the worst case, in which ev-
ery node sifts down all the way to the last level, we draw
the swaps as edges in a tree; see Figure 43. To avoid

e

Figure 43: Each node generates a path that shares no edges wit
the paths of the other nodes.

drawing any edge twice, we always rst swap to the right
and then continue swapping to the left until we arrive at
the last level. This introduces only a small inaccuracy in
our estimate. The paths cover each edge once, except for
the edges on the leftmost path, which are not covered at
all. The number of edges in the treenis 1, which im-
plies that the total number of swaps is less thafEquiv-
alently, the amortized number of swaps per item is less
than 1. There is a striking difference in time-complexity
to sorting, which takes an amortized number of about
log, n comparisons per item. The difference between 1
andlog, n may be interpreted as a measure of how far
from sorted a heap-ordered array still is.

37

heap but more complicated and asymptotically faster for
some operations. We rst introduce binomial trees, which

are special heap-ordered trees, and then explain Fibonacckigure 45: Adding the shaded node to a binomial heap congisti
heaps as collections of heap-ordered trees. of three binomial trees.

11 Fibonacci Heaps @ ® @ o

The Fibonacci heap is a data structure implementing the ORRORO + @ = ORCRORRCO

priority queue abstract data type, just like the ordinary (12 (19 (1) (12 (19 (1) ©
19

Binomial trees. Thg bin(_)mial treeof h_eighth is a tree binary notation ofr. In the example, we gai01L+1, =

obtained from two binomial trees of height 1, by link- - 1700,. The new collection thus consists of two binomial

ing the root of one to the other. The binomial tree of height {rees with sizes 8 and 4. The size 8 tree is the old one, and

0 consists of a single node. Binomial trees of heights up e size 4 tree is obtained by rst linking the two size 1

to 4 are shown in Figure 44. Each step in the construc- yees and then linking the resulting size 2 tree to the old
size 2 tree. All this is illustrated in Figure 45.

"
Fibonacci heaps. A Fibonacci heapis a collection of
heap-ordered trees. Ideally, we would like it to be a col-
lection of binomial trees, but we need more exibility. It
will be important to understand how exactly the nodes of a

Fibonacci heap are connected by pointers. Siblings are or-
ganized in doubly-linked cyclic lists, and each node has a
Figure 44: Binomial trees of heights 0, 1, 2, 3, 4. Each tree is pointer to its parent and a pointer to one of its children, as

obtained by linking two copies of the previous tree. shown in Figure 46. Besides the pointers, each node stores
tion increases the height by one, increasegitgree(the .

number of children) of the root by one, and doubles the m':L

size of the tree. It follows that a binomial tree of height 7 4 @j

has root degrek and size2". The root has the largest de- ‘

gree of any node in the binomial tree, which implies that oSN WR

every node in a binomial tree with nodes has degree at

mostlog, n.

To store any set of items with priorities, we use a small
collection of binomial trees. For an integer let n; be
thei-th bit in the binary notation, so we can write =

i=o Ni2'. To storen items, we use a binomial tree of

size2! foreachn; = 1. The total number of binomialtrees Figure 46: The Fibonacci heap representation of the rskecsl

is thus the number of 1's in the binary notationgfwhich tion of heap-ordered trees in Figure 45.

is at mostiog,(n + 1). The collection is referred to as a

binomial heap The items in each binomial tree are stored a key, its degree, and a bit that can be used to mark or un-
in heap-order. There is no speci c relationship between mark the node. The roots of the heap-ordered trees are
the items stored in different binomial trees. The item with doubly-linked in a cycle, and there is an explicit pointer to
minimum key is thus stored in one of the logarithmically the root that stores the item with the minimum key. Figure
many roots, but it is not prescribed ahead of time in which 47 illustrates a few basic operations we perform on a Fi-
one. An example is shown in Figure 45 whdrgy = bonacci heap. Given two heap-ordered treeslimkethem
1011, items are stored in three binomial trees with sizes by making the root with the bigger key the child of the
8, 2, and 1. In order to add a new item to the set, we createother root. Tounlink a heap-ordered tree or subtree, we
a new binomial tree of size 1 and we successively link remove its root from the doubly-linked cycle. Finally, to
binomial trees as dictated by the rules of adding 1 to the mergetwo cycles, we cut both open and connect them at

38

cO—0" O NO—0n
AYRAYAVAYA

unlinking

O—O0— -0y
ALY LAV

merging

linking

Figure 47: Cartoons for linking two trees, unlinking a treed
merging two cycles.

their ends. Any one of these three operations takes only
constant time.

Potential function. A Fibonacci heap supports a vari-
ety of operations, including the standard ones for priority
gueues. We use a potential function to analyze their amor-
tized cost applied to an initially empty Fibonacci heap.
Letting r; be the number of roots in the root cycle and
m; the number of marked nodes, tpetential after the
i-th operationis j = rj +2m;. When we deal with a col-
lection of Fibonacci heaps, we de ne its potential as the
sum of individual potentials. The initial Fibonacci heap is
empty, so o = 0. As usual, we let; be the actual cost
anda; = ¢+ i—1 the amortized cost of theth
operation. Since g =0 and ; Oforalli, the actual
cost is less than the amortized cost:

r r— 1

fh+2mp+ Gi:
i=1

Ci
i=1
For some of the operations, it is fairly easy to compute the
amortized cost. We get theinimum by returning the key

in the marked root. This operation does not change the po-

tential and its amortized and actual coshjs= ¢j = 1.

We meld two Fibonacci heaps${1 andH,, by rst merg-

ing the two root circles and second adjusting the pointer to
the minimum key. We have

ri(H)
mi(H)

ri—1(H1) + ri—1(H2);
mi—1(H1) + mi—1(H2);

which implies that there is no change in potential. The
amortized and actual cost is therefae= ¢c; = 1. We
insert a key into a Fibonacci heap by rst creating a new

Deletemin. Next we consider the somewhat more in-
volved operation of deleting the minimum key, which is
done in four steps:

Step 1. Remove the node with minimum key from the
root cycle.

Step 2. Merge the root cycle with the cycle of children
of the removed node.

Step 3. As long as there are two roots with the same
degree link them.

Step 4. Recompute the pointer to the minimum key.

For Step 3, we use a pointer arr&® Initially, R[i]
NuLL for eachi. For each roo®sin the root cycle, we
execute the following iteration.

i = %! degree
while RJ[i]6 NuULL do
%= R[i]; R[i]= NULL; %= LINK(%;%; i++
endwhile ;
R[i]= %

To analyze the amortized cost for deleting the minimum,
let D(n) be the maximum possible degree of any node
in a Fibonacci heap of nodes. The number of linking
operations in Step 3 is the number of roots we start with,
which is less thanj—; + D (n), minus the number of roots
we end up with, which is;j. After Step 3, all roots have
different degrees, which implies D (n)+1. Itfollows
that the actual cost for the four steps is

1+1+(ri-a+D(n) ri)+(D(n)+1)
3+2D(N)+ ri—1 rji:

Ci

The potential change is; i—1=Ti frj=1. Theamor-
tized cost is therefora; = ¢;j + i1 2D(n)+3.
We will prove next time that the maximum possible de-
gree is at most logarithmic in the size of the Fibonacci
heap,D(n) < 2log,(n + 1). This implies that deleting
the minimum has logarithmic amortized cost.

Decreasekey and delete. Besides deletemin, we also
have operations that delete an arbitrary item and that de-
crease the key of an item. Both change the structure of
the heap-ordered trees and are the reason why a Fibonacci
heap is not a collection of binomial trees but of more gen-
eral heap-ordered trees. Tllecreasekeyoperation re-

Fibonacci heap that stores only the new key and secondplaces the item with key stored in the node by x ,

melding the two heaps. We have one more node in the
root cycle so the change in potential ig i—1 = 1.
The amortized cost is therefosg= cij+1=2.

39

where 0. We will see that this can be done more ef -
ciently than to delet& and to inseri . We decrease
the key in four steps.

Step 1. Unlink the tree rooted at.
Step 2. Decrease the key in by

Step 3. Add to the root cycle and possibly update
the pointer to the minimum key.

Step 4. Do cascading cuts.

We will explain cascading cuts shortly, after explaining Figure 49: The effect of cascading after decreasing 10 to 7.
the four steps we take to delete a nod@efore we delete ~ Marked nodes are shaded.

a node , we check whether = min, and if it is then we

delete the minimum as explained above. Assume thereforeSummary analysis. As mentioned earlier, we will prove

that € min. D(n) < 2log,(n+1) nexttime. Assuming this bound, we

are able to compute the amortized cost of all operations.
Step 1. Unlink the tree rooted at. The actual cost of Step 4 in decreasekey or in delete is the
number of cutsgj. The potential changes because there
arec; new roots ana; fewer marked nodes. Also, the last
cut may introduce a new mark. Thus

Step 2. Merge the root-cycle with the cycle ofs chil-
dren.

Step 3. Dispose of .

. i i-1 = i rimat2mip 2mig
Step 4. Do cascading cuts.
G 2¢+2
Figure 48 illustrates the effect of decreasing a key and of - Gi+2:
deleting a node. Both operations create trees that are NOtrhe amortized cost is therefomg = ¢; + | .
C¢i (2 c¢) =2. The rstthree steps of a decreasekey
(@) G) (@) g © operation take only a constant amount of actual time and
increase the potential by at most a constant amount. It
(ff @ & © follows that the amortized cost of decreasekey, including
(12 (13 1) decreasekey 12to 2(13) (11) the cascading cuts in Step 4, is only a constant. Similarly,
@ | delete 4 the actual cost of a delete operation is at most a constant,
® ® @ G but Step 2 may increase the potential of the Fibonacci heap
g by as much a® (n). The rest is bounded from above by

a constant, which implies that the amortized cost of the
delete operation is @fgn). We summarize the amortized

Figure 48: A Fibonacci heap initially consisting of threedi cost of the various operations supported by the Fibonacci

mial trees modi ed by a decreasekey and a delete operation.

heap:
binomial, and we use cascading cuts to make sure that the nd the minimum 0(1)
shapes of these trees are not very different from the shapes meld two heaps 0(1)
of binomial trees. insert a new item 0(1)
delete the minimum dgn)
decrease the key of a node 0o(1)
Cascading cuts. Let be anode that becomes the child delete a node Qggn)

of another node at time We mark when it loses its rst

child after timet. Then we unmark,, unlink it, and add it~ We Wwill later see graph problems for which the difference
to the root-cycle when it loses its second child thereafter. in the amortized cost of the decreasekey and delete op-
We call this operation aut, and it may cascade because €rations implies a signi cantimprovement in the running
one cut can cause another, and so on. Figure 49 illus-time.

trates the effect of cascading in a heap-ordered tree with

two marked nodes. The rst step decreases key 10 to 7,

and the second step cuts rst node 5 and then node 4.

40

12 Solving Recurrence Relations FAcT. (L ki) kz):::(L kn) annihilates all se-
quences of the forrci ki + kb + @20+ cokli.

Recurrence relations are perhaps the most important tool

in the analysis of algorithms. We have encountered sev-

eral _methods that can spmetimes bg used to sqlve _such (L K)2Hkii L KK +1)k™ ki

relations, such as guessing the solution and proving it by i+1:

induction, or developing the relation into a sum for which L K™

we nd a closed form expression. We now describe a new = Hoi:

method to solve recurrence relations and use it to settle

the remaining open question in the analysis of Fibonacci

heaps.

What if k = ~? To answer this question, we consider

More generally, we have

FacT. (L k)" annihilates all sequences of the form
hp(i)k'i, with p(i) a polynomial of degrea 1.
Annihilation of sequences. Suppose we are given an in-

nite sequence of number#, = hag; a;;ay;:::i. We can Since operators annihilate only certain types of sequences
multiply with a constant, shift to the left and add another we can determine the sequence if we know the annihilating
sequence: operator. The general method works in ve steps:

kA = Hkag;kaj;kag;:::i;
LA = hagagas;::i; . Factor the annihilator.

1. Write down the annihilator for the recurrence.

2
A+B = hag+ bpjan + byjax + by 3. Determine what sequence each factor annihilates.

4

5

As an example, consider the sequence of powers of two, - Put the sequences together.
aj = 2'. Multiplying with 2 and shifting to the left give . Solve for the constants of the solution by using initial
the same result. Therefore, conditions.

LA 2A = h0;0;0;::::
Fibonacci numbers. We putthe method to a test by con-
We writeLA 2A =(L 2)A andthinkofL 2asan sidering the Fibonacci numbers de ned recursively as fol-
operator thatnnihilatesthe sequence of powers of 2. In lows:
generall k annihilates any sequence of the fonok'i .

What doed. k do to other sequencés = hc'ii, when Fo = 0
"6 k? Fl = 1;
(L KA = h;c%c®:i hckekck'? i Fi = Fjm1t Fj—g; forj 2
= (khcic? Writing a few of the initial numbers, we get the sequence
= KA h0;1;1;2;3;5;8;:::i. We notice that.> L 1 annihi-
lates the sequence because
We see that the operathr k annihilates only one type L2 L neio= L Zeri LIE;i h Fi

of sequence and multiplies other similar sequences by a _ _ _
constant. = hFj+2i h Fj+1i h Fji
= hoi:

Multiple operators. Instead of just one, we can ap- |f we factor the operator into its roots, we get
ply several operators to a sequence. We may multiply

with two constantsk('A) = (k)A, multiply and shift, L> L 1= (L ") =)
L(kA) = k(LA), and shift twice,L(LA) = L °A. For

example(L k)(L) annihilates all sequences of the where D

form heki + d°fi, where we assumie 6 . Indeedl k ., _ 1+ 5 _ U
annihilatesckii and leaves behing” k)d'ii, which is = 2 1:618::1;
annihilated byl. . Furthermore(L k)(L) anni- 1 5

hilates no other sequences. More generally, we have =1 " = > = 0:618::::

41

The rstrootis known as thgolden ratiobecause it repre-

For largerj , we gets; from sj—1 by adding the size of a

sents the aspect ratio of a rectangular piece of paper fromminimum tree with rootdegrge 2, whichissj—. Hence

which we may remove a square to leave a smaller rect-

angular piece of the same ratio: : 1 = 1 : ' 1.
Thus we know thafL ')(L ™) annihilatedF;i and
this means that thg-th Fibonacci number is of the form
Fj = c¢'J + tJ. We get the constant factors from the
initial conditions:

F():O
F]_:l

c +T
= ¢ +C7T

Solving the two linear Eq_uations in two unknowns, we get
c=1= 5andc= 1= 5. Thisimplies that

1 1
1+p§Lj__I 1 1 pELj__I

F o= B :
17 Pg T3 P52

From this viewpoint, it seems surprising tHgt turns out

to be an integer for ajl. Note that' j > 1 andj™j < 1.

It follows that for growing exponerit, ' I goes to in nity
and;-J goes to zero. This implies thBy is approximately
'J=" 5 and that this approximation becomes more and
more accurate gsgrows.

Maximum degree. Recall thatD (n) is the maximum

Sj = Sj—1 + Sj—2, Which is the same recurrence relation
that de nes the Fibonacci numbers. The initial values are
shifted two positions so we gef = Fj.2, as claimedd]

Consider a Fibonacci heap withnodes and let be a
node with maximum degrde = D(n). The Size Lemma
implies n Fp+2. The Fibonacci number vﬂth index
D + 2 is roughly' P*2=" 5 Becausé¢ ®*? < ~ 5 we
have

After rearranging the terms and taking the logarithm to the
base , we get
D logy P 5n+1) 2

Recall thatogy, x = log , x=10g, " and use the cablculator
to verify thatlog,* = 0:694::: > 0:5 andlogg 5=
1:672:::< 2. Hence

< 2log,(n+1):

possible degree of any one node in a Fibonacci heap ofNon-homogeneous terms. We now return to the anni-
sizen. We need two easy facts about the kind of trees that hilation method for solving recurrence relations and con-

arise in Fibonacci heaps in order to show tBgn) is at
most logarithmic inn. Let be a node of degrgg and

were linked to .
DEGREELEMMA. The degree of j is atleast 2.

ProoF Recall that nodes are linked only during the

deletemin operation. Right before the linking happens, the
two nodes are roots and have the same degree. It follows

that the degree of; was at least 1 at the time it was
linked to . The degree of ; might have been even higher
because it is possible thatost some of the older children
after ; had been linked. After being linked; may have
lost at most one of its children, for else it would have been
cut. Its degree is therefore at least 2, as claimed.

Size LEMMA. The number of descendents ofinclud-
ing)is atleasFj+z.

PROOF. Lets; be the minimum number of descendents a
node of degre¢ can have. We havey = 1 ands; = 2.

42

sider

aj = aj-1+aj-+1:

This is similar to the recurrence that de nes Fibonacci
numbers and describes the minimum number of nodes in
anAVL tree also known aseight-balanced treelt is de-
ned by the requirement that the height of the two sub-
trees of a node differ by at most 1. The smallest tree
of heightj thus consists of the root, a subtree of height
j land another subtree of height 2. We refer to the
terms involvinga; as thehomogeneouterms of the re-
lation and the others as tm®n-homogeneousrms. We
know thatL? L 1 annihilates the homogeneous part,
aj = aj—1 + aj—. If we apply it to the entire relation we

(L2 L Dhyi

|’Hj+2i h aj+1i h aji
= h1;cc:

The remaining sequence of 1s is annihilatedlby 1.
Inotherwords(L ')L 7)(L 1) annihilatestg;i
implying thata; = ¢'J + ¢J + cJ. It remains to nd

the constants, which we get from the boundary conditions The Master Theorem. It is sometimes more convenient

ag=1,a; =2 anda, =4: to look up the solution to a recurrence relation than play-
ing with different techniques to see whether any one can
c + c + ¢ = 1; make it to yield. Such a cookbook method for recurrence
c + Tt + = 2; relations of the form
'2c + Tt + M= 4
D T(n) = aT(n=b+ f(n)
Notingthat 2=_ +1,"2="+1,and *“~= 5 . . _
wegetc=(5+2 5)=5c=(5 2 5)=5andc’= 1. is provided by the following theorem. Here_ we assume
The minimum number of nodes of a heighBVL tree is thata ~ 1andb > 1 are constants and thhtis a well-

therefore roughly the constaotimes' i. Conversely, the ~ behaved positive function.
maximum height of an AVL tree witm = ¢'J nodes is

roughlyj = log(n=c) = 1:440::: log,n + O(1). In MASTERTH.EOREM. De nec= log,a and let" be an

words, the height-balancing condition implies logaritabmi arbitrarily small positive constant. Then

height. L_1 . _
o[(n°) if f (n) = O(n°"):

T(n) = (nlogn) if f (n) = O(n®);
I:g'f(n)) if f (n)= (nc*e):

Transformations. We extend the set of recurrences we
can solve by employing transformations that produce rela-
tions amenable to the annihilation method. We demon- The last of the three cases also requires a usually satis-
strate this by considering mergesort, which is another ed technical condition, namely thaif (n=b) < f (n)
divide-and-conquer algorithm that can be used to sort a for some constant strictly less than 1. For example, this

list of n items: condition is satis ed inT (n) = 2 T(n=2) + n? which im-
pliesT(n) = O(n?).

Step 1. Recursively sort the left half of the list. As another example consider the relatidi{n) =

Step 2. Recursively sort the right half of the list. 2T(n=2) + n that describes the running time of merge-

] . sort. We havee = log,2 = 1 andf (n) = n = O(n®).
Step 3. Merge the two sorted lists by simultaneously The middle case of the Master Theorem applies and we
scanning both from beginning to end. getT(n) = O(nlogn), as before.

The running time is described by the solution to the recur-
rence

T()
T(n)

1;
2T(n=2)+ n:

We have no way to work with terms lik& (n=2) yet.
However, we can transform the recurrence into a more
manageable form. De ningn = 2' andt; = T(2') we

get

to 1;
i = Zti_1+2iZ

The homogeneous part is annihilatedlby 2. Similarly,
non-homogeneous part is annihilated by 2. Hence,

(L 2)? annihilates the entire relation and we get=

(ci+ T)2'. Expressed in the original notation we thus have
T(n) = (clog,n + T)n = O(nlogn). This result is of
course no surprise and recon rms what we learned earlier
about sorting.

43

Third Homework Assignment (b) Explain how to insert a new item into the data
structure and analyze your algorithm, both in

Write the solution to each problem on a single page. The worst-case and in amortized time.

deadline for handing in solutions is October 14.
Problem 5. (20 = 10 + 10 points). Consider a full bi-

nary tree withn leaves. Thesizeof a nodes(), is
the number of leaves in its subtree and thak is
the oor of the binary logarithm of the size() =

Problem 1. (20 = 10 + 10 points). Consider a lazy ver-
sion of heapsort in which each item in the heap is

either smaller than or equal to every other item in its
subtree, or the item is identi ed asncertified To
certify an item, we certify its children and then ex-
change it with the smaller child provided it is smaller
than the item itself. Suppog¥[1::n] is a lazy heap

blog, s()c.

(a) Is it true that every internal nodehas a child
whose rank is strictly less than the rank &f

(b) Prove that there exists a leaf whose depth

with all items uncerti ed. (length of path to the root) is at madsig, n.

(&) How much time does it take to certi®pf1]?

(b) Does certifyingA[1] turn A into a proper heap
in which every item satis es the heap property?
(Justify your answer.)

Problem 2. (20 points). Recall that Fibonacci numbers
are de ned recursivelyaBp =0,F; = 1, andF, =
Fn—1+ Fnh—2. Prove the square of theth Fibonacci
number differs from the product of the two adjacent
numbers by oneE2 = Fp—; Fpap +(1)M*L

Problem 3. (20 points). Professor Pinocchio claims that
the height of am-node Fibonacci heap is at most
some constant timel®g, n. Show that the Profes-
sor is mistaken by exhibiting, for any integar a
sequence of operations that create a Fibonacci heap
consisting of just one tree that is a linear chaimof
nodes.

Problem 4. (20 = 10 + 10 points). To search in a sorted
array takes time logarithmic in the size of the array,
but to insert a new items takes linear time. We can
improve the running time for insertions by storing the
items in several instead of just one sorted arrays. Let
n be the number of items, l& = dog,(n+1)e,
and writen = ng—1Nk—2:::Ng in binary notation.
We usek sorted arraysA; (some possibly empty),
whereA; storesn;2! items. Each item is stored ex-
aﬁli?nce, and the total size of the arrays is indeed

o ni2' = n. Although each individual array is
sorted, there is no particular relationship between the
items in different arrays.

(a) Explain how to search in this data structure and
analyze your algorithm.

44

IV GRAPHALGORITHMS

13
14
15
16

Graph Search

Shortest Paths

Minimum Spanning Trees
Union- nd

Fourth Homework Assignment

45

13 Graph Search the weight of the edge connectingndj . The adjacency
matrix of the graph in Figure 50 is

We can think of graphs as generalizations of trees: they

consist of nodes and edges connecting nodes. The main I:ol 1 010 o
difference is that graphs do not in general represent hier- H 0100
archical organizations. A = 41 0 1 0=
110 1 0 1
0 0010

Types of graphs. Different applications require differ-

ent types of graphs. The most basic type is siraple

undirected graphhat consists of a sat of verticesanda ~ Which is symmetric. Irrespective of the number of edges,
setE of edges Each edge is an unordered pair (a set) of

two vertices. We always assurieis nite, and we write

(1)
(0] (2)
(3

Figure 50: A simple undirected graph with verticgsl; 2; 3; 4
and edges{O' 1341 2};,{2; 3} {3, 0} {3; 4}

Figure 51: The adjacency list representation of the gragtidn
ure 50. Each edge is represented twice, once for each erndpoin

the adjacency matrix has® elements and thus requires a
f0f th@;ﬂlection of all unordered pairs. Henes a quadratic amount of space. Often, the number of edges
subset of 5 . Note that becausg is a set, each edge can s quite small, maybe not much larger than the number of
occur onIy once. Similarly, because each edge is a set (ofvertices. In these cases, the adjacency matrix wastes mem-
two vertices), it cannot connect to the same vertex twice. ory, and a better choice is a sparse matrix representation

Verticesu andv areadjacentf fu;vg 2 E. In this caseu referred to asadjacency listswhich is illustrated in Fig-
andyv are callecheighbors Other types of graphs are ure 51. It consists of a linear array for the vertices and
) a list of neighbors for each vertex. For most algorithms,
directed E V V. we assume that vertices and edges are stored in structures
weighted has a weighting functiow : E ! R. containing a small number of elds:
labeled has a labeling function: V! Z.

non-simple there are loops and multi-edges.
struct Vertex fint d;f; ;Edge adjg;
A loopis like an edge, except that it connects to the same struct Edge fint v; Edge nexp.
vertex twice. Amulti-edgeconsists of two or more edges

connecting the same two vertices.) o
Thed;f; elds will be used to store auxiliary informa-

tion used or created by the algorithms.
Representation. The two most popular data structures

for graphs are direct representations of adjacency. Let

V = f0;1;:::;n 1g be the set of vertices. Thad-

jacency matrixs then-by-n matrix A = (ajj) with Depth-first search. Since graphs are generally not or-
|:1| if fi: g2 E; dered, there are many sequences in which the vertices can

aij 0 iffijg6E: be visited. In fact, itis _not_entirely straightforward to kea
’ ' sure that each vertex is visited once and only once. A use-
For undirected graphs, we haag = aji, SOA is sym- ful method is depth- rst search. It uses a global variable,
metric. For weighted graphs, we encode more informa- time which is incremented and used to leave time-stamps
tion than just the existence of an edge and desgas behind to avoid repeated visits.

46

void VisiT(int i)
1 timet+; V][i]:d = time
forall outgoing edgeg§ do

2 if V[j]:d=0 then
3 VI[j]: =1; ViIsIT(j)
endif
endfor ;

4 timet+; V[i]:f = time

The test in line 2 checks whether the neighpaf i has
already been visited. The assignment in line 3 records that ~ Figure 53: Tree edges are solid and back edges are dotted.
the vertex s visitedrom vertexi. A vertexis rst stamped

in line 1 with the time at which it is encountered. A vertex
is second stamped in line 4 with the time at which its visit
has been completed. To prepare the search, we initialize
the global time variable to 0, label all vertices as not yet
visited, and call \¥sIT for all yet unvisited vertices.

stampsd are consistent with the preorder traversal of the
DFS forest. The time-stamgs are consistent with the
postorder traversal. The two stamps can be used to decide,
in constant time, whether two nodes in the forest live in
different subtrees or one is a descendent of the other.
time=0; o

forall verticesi do V[i:d =0 endfor : NESTING L_E_MMA. Vertex | is a proper dgscendent of
forall verticesi do vertexi in the DFS forestifV[i]:d <V [j]:d as well

if V[i:d=0then V[i]: =0;VisiT(i) endif asV[jJf <V [ilf.
endfor
Similarly, if you have a tree and the preorder and postorder
numbers of the nodes, you can determine the relation be-

Letn be the number of vertices andthe number of edges i X
tween any two nodes in constant time.

in the graph. Depth- rst search visits every vertex once
and examines every edge twice, once for each endpoint.
The running time is therefore(@ + m), which is propor-

) : - Directed graphs and relations. As mentioned earlier,
tional to the size of the graph and therefore optimal.

we have adirected graphif all edges are directed. A
directed graph is a way to think and talk about a mathe-
DFS forest. Figure 52 illustrates depth- rst search by matical relation. A typical problem where relations arise
showing the time-stamps andf and the pointers in- is scheduling. Some tasks are in a de nite order while
dicating the predecessors in the traversal. We call an edgeotherS are unrelated. An e_zxample is the schedullng OT
undergraduate computer science courses, as illustrated in

fi;jg2 E atree edgef i = V[j]: orj = V[i]. anda . o ;
back edgeotherwise. The tree edges form tBES forest ~ Fi9ure 54. Abstractly, aelationis a pair(V; E), where

Comput. Org. Operating Distributed
and Programm. Systems Inform. Syst.

104 H 110 H 212

Program Design Program Design
and Analysis | and Analysis Il

006 = 100

Figure 52: The traversal starts at the vertex with time-gtam e
Each node is stamped twice, once when it is rst encountered
and another time when its visit is complete. Figure 54: A subgraph of the CPS course offering. The courses

CPS104 and CPS108 are incomparable, CPS104 is a predecessor
of the graph. The forest is a tree if the graph is connected of CPS110, and so on.

and a collection of two or more trees if it is not connected.
Figure 53 shows the DFS forest of the graph in Figure 52 V = f0;1;:::;n 1gis a nite set of elements and
which, in this case, consists of a single tree. The time- E V Vs a nite set of ordered pairs. Instead of

47

(i;j) 2 E wewritei j and instead ofV; E) we write
(V;). Ifi j theni is apredecessoof| andj is asuc-
cessorof i. The terms relation, directed graph, digraph,
and network are all synonymous.

Directed acyclic graphs. A cyclein a relation is a se-

guenceig i1 ik io. Evenig ig
is a cycle. Alinear extensiorof (V;) is an ordering
joij1;::1;)n—1 of the elements that is consistent with the

relation. Formally this means thgt j dmpliesk <™.
A directed graph without cycle isdirected acyclic graph

EXTENSION LEMMA. (V;
contains no cycle.

) has a linear extension iff it

PROOFE “=) " is obvious. We prove (=" by induction.

A vertexs 2 V is called asourceif it has no predecessor.
Assuming(V;) has no cycle, we can prove thdthas

a source by following edges against their direction. If we
return to a vertex that has already been visited, we have
a cycle and thus a contradiction. Otherwise we get stuck
at a vertexs, which can only happen becausehas no
predecessor, which meagss a source.

LetU = V f sgandnotethatU;)isarelationthatis
smaller than(V;). Hence(U;) has a linear extension
by induction hypothesis. Call this extensi¥nhand note
thats; X is a linear extension diV;).

Topological sorting with queue. The problem of con-
structing a linear extension is calledpological sorting

A natural and fast algorithm follows the idea of the proof:
nd a sources, prints, removes, and repeat. To expedite
the rst step of nding a source, each vertex maintains

its number of predecessors and a queue stores all sources.

First, we initialize this information.

forall verticesj do V[j]:d = 0 endfor ;
forall verticesi do

forall successorp of i do V|[j]:d++ endfor
endfor ;
forall verticesj do

if V[j]:d=0 then ENQUEUE(j) endif
endfor

Next, we compute the linear extension by repeated dele-
tion of a source.

48

while queue is non-emptgo
s = DEQUEUE

forall successorp of s do
V[jld--;
if V[j]:d=0 then ENQUEUE() endif
endfor
endwhile

The running time is linear in the number of vertices and
edges, namely & + m). What happens if there is a cycle

in the digraph? We illustrate the above algorithm for the
directed acyclic graph in Figure 55. The sequence of ver-

Figure 55: The numbers next to each vertex count the predeces
sors, which decreases during the algorithm.

tices added to the queue is also the linear extension com-
puted by the algorithm. If the process starts at vedex
and if the successors of a vertex are ordered by name then
we geta; f; d; g; c; h; b; which we can check is indeed a
linear extension of the relation.

Topological sorting with DFS. Another algorithm that

can be used for topological sorting is depth- rst search.
We output a vertex when its visit has been completed, that
is, when all its successors and their successors and so on
have already been printed. The linear extension is there-
fore generated from back to front. Figure 56 shows the

15,16

6,7

Figure 56: The numbers next to each vertex are the two time
stamps applied by the depth-rst search algorithm. The rst
number gives the time the vertex is encountered, and thendeco
when the visit has been completed.

same digraph as Figure 55 and labels vertices with time

stamps. Consider the sequence of vertices in the order of
decreasing second time stamp:

a(16);f (14); 9(13); h(12); d(9); c(8); &(7); b(5):
Although this sequence is different from the one computed

by the earlier algorithm, it is also a linear extension of the
relation.

49

14 Shortest Paths A vertex is processed by adding its unvisited neighbors to
the queue. They will be processed in turn.

One of the most common operations in graphs is nding

shortest paths between vertices. This section discusses VOid SEARCH

three algorithms for this problem: breadth- rst search W_h“_e queue is non-emptyo
for unweighted graphs, Dijkstra’s algorithm for weighted | = DEQUEUE
graphs, and the Floyd-Warshall algorithm for computing forall neighborg of i do

if V[jl:d= 1then

distances between all pairs of vertices. i . . .
V[jld= VI[ild+1; V[j]: =1i;

ENQUEUE(j)
Breadth-first search. We call a grapttonnectedf there endif
is a path between every pair of vertices. (éonnected) endfor
componenis a maximal connected subgraph. Breadth- endwhile

rst search, or BFS, is a way to search a graph. It is sim-

ilar to depth- rst search, but while DFS goes as deep as The labeN[i]:d assigned to verteixduring the traversal is

quickly as possible, BFS is more cautious and explores athe minimum number of edges of any path frero i. In

broad neighborhood before venturing deeper. The starting other words ¥V [i]:d is the length of the shortest path from

point is a vertexs. An example is shown in Figure 57. As stoi. The running time of BFS for a graph withvertices
andm edges is @ + m).

Single-source shortest path. BFS can be used to nd
shortest paths in unweighted graphs. We now extend the
algorithm to weighted graphs. AssuriteandE are the
sets of vertices and edges of a simple, undirected graph
with a positive weighting functionv : E ! R4. The
length or weight of a path is the sum of the weights of
Figure 57: A sample graph with eight vertices and ten edges jts edges. Thelistancebetween two vertices is the length
Iapeled by breath.- rst search. The label increases fromrgexe of the shortest path connecting them. For a given source
to its successors in the search. s 2 V, we study the problem of nding the distances and
shortest paths to all other vertices. Figure 59 illustrétes
problem by showing the shortest paths to the sosrde

before, we call and edgeteee edgéf it is traversed by the
algorithm. The tree edges de ne tiB#S tree which we

can use to redraw the graph in a hierarchical manner, as in
Figure 58. In the case of an undirected graph, no non-tree e 5 a
edge can connect a vertex to an ancestor in the BFS tree.
Why? We use a queue to turn the idea into an algorithm.

S
5 5

Figure 59: The bold edges form shortest paths and togetber th
shortest path tree with roat It differs by one edge from the
breadth- rst tree shown in Figure 57.

Figure 58:_ The tree edges in the redrawing of the graph intéigu ¢ non-degenerate case, in which no two paths have the
37 are solid, and the non-tree edges are dotted. same length, the union of all shortest paths ie a tree,
referred to as thehortest path treeln the degenerate case,

First, the graph and the queue are initialized. we can break ties such that the union of paths is a tree.

forall verticesi do V[i]:d= 1endfor ; As before, we grow a tree starting frosn Instead of a
V[s]:d=0; gueue, we use a priority queue to determine the next vertex
MAKEQUEUE; ENQUEUE(S); SEARCH. to be added to the tree. It stores all vertices not yet in the

50

tree and use¥ [i]:d for the priority of vertexi. First, we
initialize the graph and the priority queue.

V[sl:d=0; V][s]: 1; INSERT(S);
forall verticesi 6 sdo

V[il:d= 1 ; INSERT()
endfor

After initialization the priority queue storesswith priority
0 and all other vertices with priorit§ .

Dijkstra’s algorithm. We mark vertices in the tree to
distinguish them from vertices that are not yet in the tree.
The priority queue stores all unmarked verticegth pri-
ority equal to the length of the shortest path that goes from
i in one edge to a marked vertex and thers tasing only
marked vertices.

while priority queue is non-emptgio
i = EXTRACTMIN; marki;
forall neighborg ofi do
if j isunmarkedhen
V[jl:d=minfw(ij)+ VI[i]:d; V[]:dg
endif
endfor
endwhile

Table 3 illustrates the algorithm by showing the informa-
tion in the priority queue after each iteration of the while-
loop operating on the graph in Figure 59. The mark-

S 0

a |1l 5 5

b | 1 10 10 9 9

c |1 4

d| 1 5 5 5

e 1 1 1 10 10 10

f|1 1 1 15 15 15 15
gl|1 1 1 1 15 15 15 15

Table 3: Each column shows the contents of the priority queue
Time progresses from left to right.

ing mechanism is not necessary but clari es the process.
The algorithm perform& EXTRACTMIN operations and

at mostm DECREASEKEY operations. We compare the
running time under three different data structures used to
represent the priority queue. The rstis a linear array, as
originally proposed by Dijkstra, the second is a heap, and
the third is a Fibonacci heap. The results are shown in
Table 4. We get the best result with Fibonacci heaps for
which the total running time is @(logn + m).

51

array heap F-heap
EXTRACTMINS n? nlogn | nlogn
DECREASEKEYS m mlogm m

Table 4: Running time of Dijkstra's algorithm for three difent
implementations of the priority queue holding the yet urkedr
vertices.

Correctness. Itis not entirely obvious that Dijkstra's al-
gorithm indeed nds the shortest pathsgoTo show that

it does, we inductively prove that it maintains the follow-
ing two invariants.

(A) For every unmarked vertegx Vj]:d is the length of
the shortest path froj to s that uses only marked
vertices other thaj.

(B) For every marked verteix V[i]:d is the length of the
shortest path fromto s.

PROOEF Invariant (A) is true at the beginning of Dijkstra's
algorithm. To show that it is maintained throughout the
process, we need to make sure that shortest paths are com-
puted correctly. Speci cally, if we assume Invariant (B)
for vertexi then the algorithm correctly updates the prior-
ities V[j]:d of all neighborg of i, and no other priorities
change.

Figure 60: The vertey is the last unmarked vertex on the hypo-
thetically shortest, dashed path that connédttss.

At the moment vertex is marked, it minimize&/[j]:d
over all unmarked verticeg. Suppose that, at this mo-
ment,V[i]:d is not the length of the shortest path frono
s. Because of Invariant (A), there is at least one other un-
marked vertex on the shortest path. Let the last such vertex
bey, as shown in Figure 60. But than[y]:d < V [i].d,
which is a contradiction to the choice iof

We used (B) to prove (A) and (A) to prove (B). To make
sure we did not create a circular argument, we parametrize
the two invariants with the numbér of vertices that are

marked and thus belong to the currently constructed por-
tion of the shortest path tree. To proveAve need (R)

and to prove (B) we need (A—1). Think of the two in-
variants as two recursive functions, and for each pair of
calls, the parameter decreases by one and thus eventually
becomes zero, which is when the argument arrives at the
base case.

All-pairs shortest paths. We can run Dijkstra's algo-
rithm n times, once for each vertex as the source, and thus
get the distance between every pair of vertices. The run-
ning time is 002 logn + nm) which, for dense graphs, is
the same as @f). Cubic running time can be achieved
with a much simpler algorithm using the adjacency matrix
to store distances. The idea is to iteratémes, and after
thek-th iteration, the computed distance between vertices
i andj is the length of the shortest path franto j that,
other than andj, contains only vertices of indeéor less.

for k=1to ndo
for i=1to ndo
for j =1to ndo
Afi;j 1=minfAfi;j I; Ali; k] + Alk;j]g
endfor
endfor
endfor

The only information needed to updaidi;j] during the
k-th iteration of the outer for-loop are its old value and
values in thek-th row and thek-th column of the prior
adjacency matrix. This row remains unchanged in this it-
eration and so does this column. We therefore do not have
to use two arrays, writing the new values right into the old
matrix. We illustrate the algorithm by showing the adja-
cency, or distance matrix before the algorithm in Figure
61 and after one iteration in Figure 62.

s a b c d e f g

s 5 10 4 5
a 0 4 5 10
b |10 4 ©

Cc

d |5 0 10
e 5

f 10

g 10 0

Figure 61: Adjacency, or distance matrix of the graph in Fégu
57. All blank entries storeo.

52

0[5 104 5 s|o][s[9]4 s5[10[2g
5(0 4/9]10 5 10 a|5/0/4 9 105 10
104 014/15 b [o]4]o0]13[14 of14
4/9/14/0 4 c |4]|9]13/0 4)14/19
5 10|15 4 10 d | 5|10/14 4 0|15 2010
5 e |10/ 5| 9|14/15 0
10 f |15 1014 19 29 6

10 0| 9 10 0
s ab c de f g s ab c de f g
0 5/9|4 5 10 15 s|0 5 9 5 10 15
5 0/4]/9 105 10 a|5 0 4/9/105 10
9 4/0|1314 9 14 | b |9 4 0|13 14 9 14
4 9|13 0 4 1419 | c |4 9 13/0|4 14 19
5 10[{14 4 0 152010/ d |5 10 14 4|0 15 2010
10 5[9(14 150 6 e |10 5 9|14/ 150 6
15 10[14/ 19 20 6 O f]1510 1419 206 ©

10 0| 9 10 0
s ab c de f g s a b c d e f |
0 59 4/5/10 1515 s |0 5 9 4 5|10 1515
5 0 4 9|10 5 10/20) a |5 0 4 9 10/ 5|10 20
9 4 0 1314 9 1424 b |9 4 0 13 14 9| 1424
4 9 13 0|4|14 1914 ¢ |4 9 13 0 4|14 1914
5 10 14 4| 0|15 2010 d |5 10 14 4 0] 1§ 2010
105 9 14150 6|25 e |10 5 9 14 1506 25
15 10 14 19 20 6 030 f |15 10 14 19 206 |0 30
15) 20 24 1410 25 3po| 9 |15 20 24 1410] 25 300
s ab c de f g s a b c d e f |
0 59 4 51015915 s |0 5 9 4 5 10 1515
5 0 4 9 105(1020 a |5 0 4 9 10 5 1020
9 4 0 1314 9/ 1424 b |9 4 0 13 14 9 1424
4 9 130 4 141914 ¢ |4 9 130 4 14 1914
510 14 4 0 152910 d |5 10 14 4 0 15 2010
105 9 14 150|6|25 e |10 5 9 14 150 6|25
15 10 14 19 20 6| 0|30 f |15 10 14 19 206 0|30
15 20 24 1410 2% 30p0| 9 |15 20 24 1410 25 300

Figure 62: Matrix after each iteration. Theth row and colum
are shaded and the new, improved distances are high-lighted

The algorithm works for weighted undirected as well
as for weighted directed graphs. Its correctness is easily
veri ed inductively. The running time is @¢).

15 Minimum Spanning Trees

When a graph is connected, we may ask how many edges
we can delete before it stops being connected. Depending
on the edges we remove, this may happen sooner or later.
The slowest strategy is to remove edges until the graph
becomes a tree. Here we study the somewhat more dif-
cult problem of removing edges with a maximum total
weight. The remaining graph is then a tree with minimum g re 64: The bold edges form a spanning tree of welgit-
total weight. Applications that motivate this questioncan 124+1:3+1:4+1:1+1:2+1:6+1:9 =10:6.
be found in life support systems modeled as graphs or net-
works, such as telephone, power supply, and sewer sys-
tems. more edges. LeA E be a subset of some MST of a
connected grapfiv;E). Anedgeuv 2 E A is safe for
A if A[f uvgis also subset of some MST. The generic

Free trees. An undirected graplfU; T) is afree treeif algorithm adds safe edges until it arrives at an MST.
it is connected and contains no cycle. We could impose a

hierarchy by declaring any one vertex as the root and thus
obtain arooted tree Here, we have no use for a hierarchi-
cal organization and exclusively deal with free trees. The

A=
while (V;A) is not a spanning trego
nd a safe edgaiv; A= A[f uvg

endwhile
a b
As long asA is a proper subset of an MST there are safe
e . edges. Specically, if(V;T) isan MST andA T then
Cc

d all edges inT A are safe forA. The algorithm will
therefore succeed in constructing an MST. The only thing

that is not yet clear is how to nd safe edges quickly.
g h i

Figure 63: Adding the edgeg to the tree creates a single cycle

with verticesd: g; h: f: e; a. Cuts. To develop a mechanism for identifying safe

edges, we de ne &ut, which is a partition of the vertex

. setinto two complementary seié,= W [_(V W). Itis
number of edges of a free tree is always one less than thecrossed)y anedge 2 Eifu2 Wandv2V W, and

number of vertices. Whenever we add a new edge (con—.t respectsan edae seb if A contains no crossing edae
necting two old vertices) we create exactly one cycle. This ! pects g€ ! -ontal ing edge.
The de nitions are illustrated in Figure 65.

cycle can be destroyed by deleting any one of its edges,
and we get a new free tree, as in Figure 63. (\&tE) be

a connected and undirected graphsébgraphis another
graph(U; T) with U VvV andT E. Itis aspanning
treeif it is a free tree withU = V.

Minimum spanning trees. For the remainder of this
section, we assume that we also have a weighting func-
tion,w : E ! R. Theweightof %aph is then the
total weight of its edgesy(T) = - w(e). A mini-
mum spanning treeor MST of G is a spanning tree that
minimizes the weight. The de nitions are illustrated in Figure 65: The vertices inside and outside the shaded region
Figure 64 which shows a graph of solid edges with a min- form a cut that respects the collection of solid edges. Thedo
imum spanning tree of bold edges. A generic algorithm ©dges cross the cut.

for constructing an MST grows a tree by adding more and

53

CuT LEMMA. LetA be subset of an MST and consider a The main algorithm expands the tree by one edge at a time.
cutW [L(V W) thatrespectd. If uv is a crossing It uses marks to distinguish vertices in the tree from ver-

edge with minimum weight theav is safe forA. tices outside the tree.
PROOF. Consider a minimum spanning tré¥; T) with while priority queue is non-empigo
A T. Ifuv 2 T then we are done. Otherwise, let i = EXTRACTMIN; marki;
TH= T[f uvg. BecauseTl is a tree, there is a unique forall - neighborg of i do .
path fromutovin T. We haveu 2 W andv2 V. W, if] isunmarkedand w(ij) <V [j]:d then
so the path switches at least once between the two sets. VIild=w(ij); V] =i
Suppose it switches along, as in Figure 66. Edgry endif
endfor
endwhile
X
} y After running the algorithm, the MST can be recovered
from the - elds of the vertices. The algorithm together
v with its initialization phase performs = jVj insertions
into the priority queuen extractmin operations, and at
Figure 66: Addinguv creates a cycle and deleting destroys mostm = JEj decreasekey operations. Using the Fi-
the cycle. bonacci heap implementation, we get a running time of

O(nlogn + m), which is the same as for constructing the

crosses the cut, and sindecontains no crossing edges we Shortest-path tree with Dijkstra’s algorithm.
havexy 62A. Becausaiv has minimum weight among
crossing edges we hawe(uv) w(xy). Dene T™=

O - \ Kruskal's algorithm. Kruskal's algorithm is another
TUf xyg. Then(V; T is a spanning tree and because

implementation of the generic algorithm. It adds edges in
a sequence of non-decreasing weight. At any moment, the
chosen edges form a collection of trees. These trees merge
- - . . to form larger and fewer trees, until they eventually com-
it is a minimum spanning tree. The claim follows because . ~. . . S
L bine into a single tree. The algorithm uses a priority queue
A[fug TH . .
. o for the edges and a set system for the vertices. In this
A typical application of the Cut Lemma takes a compo- context, the term “system' is just another word for “set’,
nent of(V; A) and de nesW as the set of vertices of that put we will use it exclusively for sets whose elements are

w(TH = w(T) wixy)+ w(u) w(T)

component. The complementary 8¢t W contains all themselves sets. Implementations of the set system will
other vertices, and crossing edges connect the componenbe discussed in the next lecture. Initially,= ; , the pri-
with its complement. ority queue contains all edges, and the system contains a

singleton set for each verteg€, = ff ugju 2 Vg. The
] .) . algorithm nds an edge with minimum weight that con-
Prim’s algorithm. Prim’s algorithm chooses safe edges pects two components de ned . We setW equal to
to grow the tree as a single component from an arbitrary ihe vertex set of one component and use the Cut Lemma
rst vertex s. Similar to Dijkstra's algorithm, the vertices {5 show that this edge is safe far The edge is added to
that do not yet belong to the tree are stored in a priority A and the process is repeated. The algorithm halts when

gueue. For each vertdxoutside the tree, we de ne its only one tree is left, which is the case whancontains
priority V[i].d equal to the minimum weight of any edge , "1 = jVj 1edges.
that connects to a vertex in the tree. If there is no such

edge theV[i]:d = 1 . In addition to the priority, we store A=
the index of the other endpoint of the minimum weight while jAj<n 1do
edge. We rstinitialize this information. uv = EXTRACTMIN;
nd P;Q2 Cwithu2 P andv 2 Q;
V[sl:|d=0;V[s]: = 1, INSERT(S); if P 6 Qthen
forall verticesi 6 sdo A = A[f uvg; mergeP andQ
V[i]:d= 1 ; INSERT() endif
endfor . endwhile

54

The running time is @n logm) for the priority queue op-
erations plus some time for maintaini@g There are two
operations for the set system, namely nding the set that
contains a given element, and merging two sets into one.

An example. We illustrate Kruskal's algorithm by ap-
plying it to the weighted graph in Figure 64. The sequence
of edges sorted by weight e, fi , fh, ad, ae, hi, de, ef ,

ac, gh, dg, bf, eg, bi, ab. The evolution of the set system

3

. »

Figure 67: Eight union operations merge the nine single&is s
into one set.

is illustrated in Figure 67, and the MST computed with
Kruskal's algorithm and indicated with dotted edges is the
same as in Figure 64. The edgekfi , fh, ad, aeare all
added to the tree. The next two ed@e,andde, are not
added because they each have both endpoints in the same
component, and adding either edge would create a cycle.
Edgeef is added to the tree giving rise to a set in the sys-
tem that contains all vertices other thgmandb. Edgeac

is not addedgh is addeddgis not, and nallybf is added

to the tree. At this moment the system consists of a single
set that contains all vertices of the graph.

As suggested by Figure 67, the evolution of the con-
struction can be interpreted as a hierarchical clusterfng o
the vertices. The speci ¢ method that corresponds to the
evolution created by Kruskal's algorithm is referred to as
single-linkage clustering.

55

An interesting feature of the problem is thatoperations
can be executed in a time that is only ever so slightly more
than linear inm.

16 Union-Find
In this lecture, we present two data structures for the dis-
joint set system problem we encountered in the implemen-
tation of Kruskal's algorithm for minimum spanning trees.
1 2 3 4 5 6 7

8
C.set 33| 3| 8|8 11| 8

C.size 5 4 3
0

w

C.nextwfrb/{o efofefo
Abstract data type. A disjoint set systeris an abstragct)
data type that represents a partitiGnof a set[n] = Figure 68: The system consists of three sets, each nameaby th
f1,2;:::,ng. In other wordsC is a set of pairwise dis- bold element. Each element stores the name of its set, {ypssib
joint subsets ofn] such that the union of all sets @ is the size of its set, and possibly a pointer to the next eleriment

[n]. The data type supports the same set.

set FIND(i): return P 2 C withi 2 P; void UNION(int P: Q)
void UNION(P;Q):C=C f P;Qg[f P[Qg. if C[P]:size< C [Q]:sizethen P $ Q endif ;
C[P]:size= C[P]:size+ C[Q]:size
In most applications, the sets themselves are irrelevant, second= C[P]:next C[P]:next= Q; t = Q;
and it is only important to know when two elements be- while t 60 do
long to the same set and when they belong to different sets Clt]:set= P; u=t; t = C[t]:next
in the system. For example, Kruskal's algorithm executes endwhile ; Clu]:next= second
the operations only in the following sequence:

In the worst case, a singleNJON operation takes time
(n). The amortized performance is much better because

P = FIND(i); Q= FIND(j); i
() Q () we spend time only on the elements of the smaller set.

if P 6 Qthen UNION(P; Q) endif

WEIGHTED UNION LEMMA. n 1 UNION operations
This is similar to many everyday situations where it is usu- applied to a system ofi singleton sets take time
ally not important to know what it is as long as we recog- O(nlogn).
nize when two are the same and when they are different.

PrROOFE For an element,, we consider the cardinality of
the set that containsiit(i) = C[FIND(i)]:size Each time
the name of the set that containshanges, (i) at least

Linked lists. We construct a fairly simple and reason- doubles. After changing the narkéimes, we have (i)
ably ef cient rst solution using linked lists for the sets. ok 4 thereforek log, n. In other w,ordsj can be in

We use a table of length, and for eachi 2 [n], we store the smaller set of a NlON operation at modbg, n times.

tEe nlame of th? iet that contannzFurthet:more, Wef“rr;k The claim follows because aNJON operation takes time
the elements of the same set and use the name of the st roportional to the cardinality of the smaller set.

element as the name of the set. Figure 68 shows a sampléJ
set system and its representation. It is convenient to also

store the size of the set with the rst element. Up-trees. Thinking of names as pointers, the above data

To perform a WION operation, we need to change the structure stores each set in a tree of height one. We can
name for all elements in one of the two sets. To save time, use more general trees and get more ef ciemtiN op-
we do this only for the smaller set. To merge the two lists erations at the expense of sloweiNB operations. We
without traversing the longer one, we insert the shortér lis consider a class of algorithms with the following common-
between the rst two elements of the longer list. alities:

56

each set is a tree and the name of the set is the index int

of the root;
FIND traverses a path from a node to the root;

UNION links two trees.

It suf ces to store only one pointer per node, namely the
pointer to the parent. This is why these trees are called
up-trees It is convenient to let the root point to itself.

Figure 69: The WION operations create a tree by linking the
root of the rst set to the root of the second set.

1 2 3 4 5 6 7 8 9

([o[o[oe]e o000]0]
‘ 9 |
(.

10 11

clefe]

FRIT]

12

—®

Figure 70: The table stores indices which function as posras
well as names of elements and of sets. The white dot repsesent
a pointer to itself.

Figure 69 shows the up-tree generated by executing the

following eleven WNION operations on a system of twelve
singleton sets2[3,4[7,2[4,1[2,4[10,9[12
12[2,8[11, 8[2,5[6, 6[1. Figure 70 shows the
embedding of the tree in a table.NLON takes constant
time and FND takes time proportional to the length of the
path, which can be as largeias 1.

Weighted union. The running time of IlND can be im-
proved by linking smaller to larger trees. This is the ide
of weighted uniomagain. Assume a eldC[i]:p for the
index of the parent@[i]:p = i if i is a root), and a eld
CJi]:sizefor the number of elements in the tree rooted. at

FIND(int i)
if Clil:;p6 ithenreturn FIND(CJi]:p) endif ;
return .

void UNION(Int i j)
if CJi]:size< C[j]:sizethen i $ | endif ;
CJi]:size= ClJi]:size+ CJ[j]:size C[jl:p=i.

The size of a subtree increases by at least a factor of 2 from
a node to its parent. The depth of a node can therefore not
exceedog, n. It follows that AND takes at most time
O(logn). We formulate the result on the height for later
reference.

HEIGHT LEMMA. An up-tree created fromm singleton
nodes byn 1 weighted union operations has height
at mostiog, n.

Path compression. We can further improve the time for
FIND operations by linking traversed nodes directly to the
root. This is the idea opath compressianThe UNION
operation is implemented as before and there is only one
modi cation in the implementation of thelRD operation:

int FIND(int i)

if Cl[il:;p6 ithen CJi]:p= FIND(C]i]:p) endif ;
return CJi]:p.

2u3 i

éz? i
& @0
®

703

(2)
OJORORORE
@

W

3 &
we o ®
e &
708 g
@

Figure 71: The operations and up-trees develop from top to bo

We need the size eld only for the roots and we need the tom and within each row from left to right.

index to the parent eld everywhere except for the roots.
The FND and UNION operations can now be implemented
as follows:

57

If i is not root then the recursion makes it the child of a
root, which is then returned. Ifis a root, it returns itself

because in this cagg[i]:p = i, by convention. Figure 71 Note that if is a proper descendent of another node
illustrates the algorithm by executing a sequence of eight at some moment during the execution of the operation
operations [j, which is short for nding the sets that sequence then is a proper descendent ofin T. In this
containi andj, and performing a ™ION operation if the case ()< ().

sets are different. At the beginning, every element forms
its own one-node tree. With path compression, it is dif -

cult to imagine that long paths can develop at all. 13 3
16 3

15 3

14 3

Iterated logarithm. We will prove shortly that the iter- 13 3
ated logarithm is an upper bound on the amortized time 2 3
for a AND operation. We begin by de ning the function 10 3
fromits inverse. LeF (0) =1 andF (i +1) =2 M we 5 3
haveF (1) = 2, F(2) = 22, andF (3) = 22", In general, 7 3
F (i) is the tower ofi 2s. Table 5 shows the values Bf g §
for the rstsix arguments. For 3, F is very small, but 4 / ,,,,,,,,,,,,,,,,,,,, \ 2
3 2

2/ \ 1

iffo[1][2] 3 4 5 1 £ A\ o

F 1] 2] 4] 16| 65536 | 25°°%°

Figure 72: A schematic drawing of the tré@ebetween the col-

Table 5: Values of . umn of level numbers on the left and the column of group num-
bers on the right. The tree is decomposed into ve groupsheac
fori =5 it already exceeds the number of atoms in our 3 sequences of contiguous levels.
universe. Note that the binary logarithm of a towei @s
isatowerofi 12s. Theterated logarithms the number De ne the group numberof a node as the iterated

of times we can take the binary logarithm before we drop |ogarithm of the levelg() = log ='(). Because the
down to one or less. In other words, the iterated logarithm |evel does not exceeat], we havey() log™, for every

is the inverse of, node in T. The de nition of g decomposes an up-tree
into at mostl + log " groups, as illustrated in Figure 72.
log"™d = minfijF(i) ng The number of levels in groupis F(g) F(g 1), which
= minfijlog,log,:::log,n 1g; gets large very fast. On the other hand, because levels get

smaller at an exponential rate, the number of nodes in a
where the binary logarithm is takertimes. Asn goesto group is not much larger than the number of nodes in the
in nity, Iog'—_r\ goes to in nity, but very slowly. lowest level of that group.

_ GROUPCENSUSLEMMA. There are at mos2n=F (g)
Levels and groups. The analysis of the path com- nodes with group numbey.

pression algorithm uses two Census Lemmas discussed

PrROOF Each node with group numbghas level between
F(g 1)+1 andF(g). We use the Level Census Lemma
to bound their number:

FIND operations, and let be the collection of up-trees
we get by executing the sequence, ithout path com-
pression. In other words, theiND operations have no

in uence on the trees. Thievel () of a node is its Flo—1, n (1+ 3+ 2+
height of its subtree i plus one. =1 oF (9—1)
EF(g—1)+1
LEVEL CENSUSLEMMA. There are at mosn=251 _n
nodes at level. F(9)’
as claimed.

PROOF We use induction to show that a node at level
has a subtree of at leag7! nodes. The claim follows
because subtrees of nodes on the same level are disjointAnalysis. The analysis is based on the interplay between
the up-trees obtained with and without path compression.

58

The latter are constructed by the weighted union opera- Summary. We proved an upper bound on the time
tions and eventually form a single tree, which we denote needed form n UNION and RAND operations. The

asT. The former can be obtained from the latter by the
application of path compression. Note thaflinthe level

bound is more than constant per operation, although for
all practical purposes it is constant. Tlog 1 bound can

strictly increases from a node to its parent. Path compres-be improved to an even smaller function, usually referred
sion preserves this property, so levels also increase whento as (n) or the inverse of the Ackermann function, that

we climb a path in the actual up-trees.

We now show that any sequencemof n UNION and
FIND operations on a ground spti] takes time at most
O(m log™) if weighted union and path compression is
used. We can focus on#D because eachNJON opera-
tion takes only constant time. For aN® operatiomA;, let

X be the set of nodes along the traversed path. The total

time for executing all lND operations is proportional to
P
X = X
i
For 2 Xj, letpi() be the parent during the execution of

Ai. We partitionX ; into the topmost two nodes, the nodes
just below boundaries between groups, and the rest:

Yi = f 2Xjj isrootorchild of root;

Zi = f 2Xi Yijo()<g(pi()o;

Wi = f 2Xi Yijg()=api()a
Clearly,jYij 2andjz;j | It remains to bound
the total size of th&V;, w = ; jW;j. Instead of count-

ing, for eachAj, the nodes iW;, we count, for each node
, the AND operationsA; for which 2 Wj. In other

words, we count how often can change parent until its

parent has a higher group number than Each time

goes to in nity even slower than the iterated logarithm.

It can also be proved that (under some mild assumptions)
there is no algorithm that can execute general sequences
of UNION and FND operations in amortized time that is
asymptotically less than(n).

changes parent, the new parent has higher level than the

old parent. If follows that the number of changes is at
mostF(g()) F(g() 1). The number of nodes with
group numbeq is at mosn=F (g) by the Group Census
Lemma. Hence

i R
v Fg FO FO D

2n (1 +log):
This implies that

X 2m + mlog™d + 2n(1 + log 1)
= O(mlog™);
assumingn n. Thisis an upper bound on the total time
it takes to executm FIND operations. The amortized cost

per AND operation is therefore at most I©¢™n), which
for all practical purposes is a constant.

59

Fourth Homework Assignment (b) Give a tight bound on the worst-case running
time of your algorithm.

Write the solution to each problem on a single page. The
deadline for handing in solutions is October 30.

Problem 1. (20 = 10 + 10 points). Consider a free tree
and letd(u;v) be the number of edges in the path
connectingu to v. The diameterof the tree is the
maximumd(u; v) over all pairs of vertices in the tree.

(a) Give an ef cient algorithm to compute the di-
ameter of a tree.

(b) Analyze the running time of your algorithm.

Problem 2. (20 points). Design an ef cient algorithm to
nd a spanning tree for a connected, weighted, undi-
rected graph such that the weight of the maximum
weight edge in the spanning tree is minimized. Prove
the correctness of your algorithm.

Problem 3. (7 + 6 + 7 points). A weighted grapls =
(V;E) is anear-treeif it is connected and has at most
n + 8 edges, whera is the number of vertices. Give
an Q(n)-time algorithm to nd a minimum weight
spanning tree foG.

Problem 4. (10 + 10 points). Given an undirected
weighted graph and verticsst, design an algorithm
that computes the number of shortest paths fsaim
t in the case:

(a) All weights are positive numbers.
(b) All weights are real numbers.

Analyze your algorithm for both (a) and (b).

Problem 5. (20 = 10 + 10 points). Theoff-line mini-
mum problems about maintaining a subset [of] =
f1;2;:::;ng under the operationsN\6ERT and Ex-
TRACTMIN. Given an interleaved sequenceroin-
sertions andn min-extractions, the goal is to deter-
mine which key is returned by which min-extraction.
We assume that each elemért [n] is inserted ex-
actly once. Speci cally, we wish to Il in an array
E[1::m] such thatE[i] is the key returned by thie
th min-extraction. Note that the problemasf-line,
in the sense that we are allowed to process the entire
sequence of operations before determining any of the
returned keys.

(a) Describe how to use a union- nd data structure
to solve the problem ef ciently.

60

V TOPOLOGICALALGORITHMS

17 Geometric Graphs
18 Surfaces
19 Homology
Fifth Homework Assignment

61

17 Geometric Graphs PROOF. Choose a spanning tré¥; T) of G = (V;E). It
hasn vertices,jTj = n 1 edges, and one (unbounded)

In the abstract notion of a graph, an edge is merely a pair of face. We have (n 1)+1 =2, which proves the for-
vertices. The geometric (or topological) notion of a graph Mula if G is a tree. Otherwise, draw the remaining edges,
is closer to our intuition in which we think of an edge as a 0N at a time. Each edge decomposes one face into two.
curve that connects two vertices. The number of vertices does not changejncreases by

one, and increases by one. Since the graph satis es the

linear relation before drawing the edge, it satis es the re-
Embeddings. LetG = (V;E) be a simple, undirected |ation also after drawing the edge.
graph and writeR? for the two-dimensional real plane.
A drawing maps every vertex 2 V to a point"(v) in
R?, and it maps every eddai;vg 2 E to a curve with
endpoints'(u) and"(v). The drawing is ammbeddingf

A planar graph ismaximally connected adding any
one new edge violates planarity. Not surprisingly, a planar
graph of three or more vertices is maximally connected
iff every face in an embedding is bounded by three edges.
Indeed, suppose there is a face bounded by four or more

1. different vertices map to different points; : S
P P edges. Then we can nd two vertices in its boundary that

2. the curves have no self-intersections; are not yet connected and we can connect them by draw-
3. the only points of a curve that are images of vertices ing a curve that passes through the face; see Figure 74.
are its endpoints; For obvious reasons, we call an embedding of a maxi-

4. two curves intersect at most in their endpoints.

We can always map the vertices to points and the edges
to curves inR? so they form an embedding. On the other
hand, not every graph has an embeddinB#n The graph

G is planar if it has an embedding iR?. As illustrated

in Figure 73, a planar graph has many drawings, not all of
which are embeddings. straight-linedrawing or embed-

Figure 74: Drawing the edge fromto c decomposes the quad-
rangle into two triangles. Note that we cannot draw the edge
from bto d since it already exists outside the quadrangle.

mally connected planar graph with 3 vertices atri-
angulation For such graphs, we have an additional linear
Figure 73: Three drawings @€ 4, the complete graph with four ~ relation, namel\3® = 2m. We can thus rewrite Euler's
vertices. From left to right: a drawing that is not an embeddi ~ formulaandgeh m+ 2" =2 andn 3 =2 and
an embedding with one curved edge, a straight-line embgddin therefore

ding is one in which each edge is mapped to a straight line m = 3n 6;

segment. It is uniquely determined by the mapping of the = 2n 4

vertices," : V | R?. We will see later that every planar

graph has a straight-line embedding. Every planar graph can be completed to a maximally con-

nected planar graph. Far 3 this implies that the planar

) , graph has atmo€n 6 edges and at mo&h 4 faces.
Euler's formula. A faceof an embedding of G is a

component of the thus de ned decompositionRs. We
write n = jVj, m = jEj, and" for the number of faces. Forbidden subgraphs. We can use Euler's relation to
Euler's formula says these numbers satisfy a linear rela- prove that the complete graph of ve vertices is not planar.

tion. It hasn = 5 vertices andn = 10 edges, contradicting the
upper bound of at mo€in 6 = 9 edges. Indeed, every
EULER'S FORMULA. If G is connected antl is an em- drawing ofK 5 has at least two edges crossing; see Figure
bedding ofG in R2thenn m+ =2, 75. Similarly, we can prove that the complete bipartite

62

O @

Figure 75: A drawing oK 5 on the left and oK 3 3 on the right. Figure 76: A convex region on the left and a non-convex star-
convex region on the right.

graph with three plus three vertices is not planar. It has
n = 6 verticesanan = 9 edges. Every cyclein abipartite such pointx is thekernelof R. Clearly, every convex re-

graph has an even number of edges. Hedce, 2m. gion is star-convex but not every star-convex region is con-
Plugging this into Euler's formula, we gat m+ 2 2 vex. Similarly, there are regions that are not star-convex,
and thereforen 2n 4 =8, again a contradiction. even rather simple ones such as the hexagon in Figure 77.

In a senseKs and K5 are the quintessential non- However, every pentagon is star-convex. Indeed, the pen-

planar graphs. To make this concrete, we still need an

operation that creates or removes deq?eertices. Two

graphs ardhomeomorphid@ one can be obtained from the

other by a sequence of operations, each deleting a d&gree-

vertex and replacing its two edges by the one that connects

its two neighbors, or the other way round. 2

KURATOWSKI'S THEOREM. A graphG is planar iff no Figure 77: A non-star-convex hexagon on the left and a star-

subgraph of5 is homeomorphic té& 5 or toK 3 3. convex pentagon on the right. The dark region inside the pen-
tagon is its kernel.

The proof of this result is a bit lengthy and omitted.
tagon can be decomposed into three triangles by drawing

two diagonals that share an endpoint. Extending the inci-
Pentagons are star-convex. Euler's formulacan alsobe dent sides into the pentagon gives locally the boundary of
used to show that every planar graph has a straight-line the kernel. It follows that the kernel is non-empty and has
embedding. Note that um of vertex degrees countsinterior points.
each edge twice, that is, ,, ,deg() = 2m. For planar
graphs, twice the number of edges is less tBarwhich
implies that the average degree is less than six. It follows Fary's construction. We construct a straight-line em-
that every planar graph has at least one vertex of degreebedding of a planar grap = (V;E) assumingG is
5 or less. This can be strengthened by saying that every maximally connected. Choose three vertiGed); ¢ con-
planar graph witm 4 vertices has at least four vertices nected by three edges to form the outer triangles Has
of degree at mosh each. To see this, assume the planar only n = 3 vertices we are done. Else it has at least one
graph is maximally connected and note that every vertex vertexu 2 V = fa;b; g with degu) 5.
has degree at lea3t The de ciency fron@{eé is thus
at most3. The total de ciency isn vivide9() = step 1. Removeu together with thék = deg(u) edges
12 vyh|ch |mplles that we have at least four vertices with incident tou. Addk 3 edges to make the graph
positive de ciency. maximally connected again.

We need a little bit of geometry to prepare the construc-
tion of a straight-line embedding. A regidd R? is
convexif x;y 2 R implies that the entire line segment
connectingk andy is contained inR. Figure 76 shows Step 3. Remove the addekl 3 edges and map to

Step 2. Recursively construct a straight-line embed-
ding of the smaller graph.

regions of either kind. We caRR star-conveof there is a point"(u) in the interior of the kernel of the result-
a pointz 2 R such that for every point 2 R the line ing k-gon. Connect (u) with line segments to the
segment connectingwith z is contained irR. The set of vertices of thek-gon.

63

Figure 78 illustrates the recursive construction.
straightforward to implement but there are numerical is-
sues in the choice ¢f(u) that limit the usefulness of this
construction.

Figure 78: We x the outer triangle, remove the degteeertex,
recursively construct a straight-line embedding of the, rasd
nally add the vertex back.

Tutte’s construction. A more useful construction of a
straight-line embedding goes back to the work of Tutte.
We begin with a de nition. Given a nite set of points,

—
Xi:
i=1

S|k

Forj = 2, it is the midpoint of the edge and fpr= 3,

it is the centroid of the triangle. In general, the average
is a point somewhere between tke LetG = (V;E)

be a maximally connected planar graph ad; cthree
vertices connected by three edges. We now follow Tutte's
construction to get a mappidg: V ! R? so that the
straight-line drawing o6 is a straight-line embedding.

Step 1. Mapa;b;cto points”(a);"(b);"(c) spanning
a triangle inR?.

Step 2. Foreachvertexi 2 V f a;b;@, letNy be
the set of neighbors af. Mapu to the average of the
images of its neighbors, that is,

1
"(v):

NG g

"(u)

64

It is The fact that the resulting mappirig: V !

R? gives a
straight-line embedding o& is known as Tutte's Theo-
rem. It holds even if5 is not quite maximally connected
and if the points are not quite the averages of their neigh-
bors. The proofis a bit involved and omitted.

The points'(u) can be computed by solving a system of
linear equations. ilfuptrate this fprthe gra%jifp Figure
78. We set'(a) = _; ,"(b .= The
other ve points are computed by solving the system of
linear equation®\v = 0, where

] 1
0 01 5 1 1 1 1
01 1 3 1 0 ©O
A = 11 1 1 6 1 O
11 1 0 1 5 1
0 01 1 0 0 1 3

andv is the column vector of point§a) to "(y). There

are really two linear systems, one for the horizontal and
the other for the vertical coordinates. In each system, we
haven 3equations and a total of 3 unknowns. This
gives a unique solution provided the equations are linearly
independent. Proving that they are is part of the proof of
Tutte's Theorem. Solving the linear equations is a numeri-
cal problem that is studies in detail in courses on numerical
analysis.

18 Surfaces Triangulations. A standard representation of a compact
2-manifold uses triangles that are glued to each other

Graphs may be drawn in two, three, or higher dimen- &long shared edges an_d ve.rti_ces. A_coIIecIli@mf tri-
sions, but they are still intrinsically onlg-dimensional. ~ @ngles, edges, and vertices igiangulationof a compact
One step up in dimensions, we nd surfaces, which are 2-manifold if

2-dimensional.
I. for every triangle inK , its three edges belong t0,

)))) and for every edge i , its two endpoints are ver-
Topological2-manifolds. The simplest kind of surfaces tices inK :

are the ones that on a small scale look like the real plane.
A spaceM is a 2-manifold if every pointx 2 M is
locally homeomorphic tdR?. Speci cally, there is an
open neighborhoodl of x and a continuous bijection
h:N ! R?whose inverse is also continuous. Such a An example is shown in Figure 81. To simplify language,
bicontinuous map is calledtomeomorphismExamples ~ We call each element ¢f asimplex If we need to be spe-
of 2-manifolds are the open disk and the sphere. The for- i ¢, we add the dimension, calling a vertexasimplex,
mer is not compact because it has covers that do not have2n edge d-simplex, and a triangle 2-simplex. Aface
nite subcovers. Figure 79 shows examples of comact ~ Of @ simplex is a simplex . For example, a trian-

manifolds. If we add the boundary circle to the open disk 9l€ has seven faces, its three vertices, its two edges, and
itself. We can now state Condition | more succinctly: if

isaface of and 2 K then 2 K. To talk about

II. every edge belongs to exactly two triangles and every
vertex belongs to a single ring of triangles.

Figure 79: Three compagtmanifolds, the sphere, the torus, and
the double torus.

we get a closed disk which is compact but not every point
is locally homeomorphic t&R?. Speci cally, a point on
the circle has an open neighborhood homeomorphic to the

closed half-plangHz = f(x1ix2) 2 R*jx1 0g. A Figure 81: A triangulation of the sphere. The eight triasgee
space whose points have open neighborhoods homeomorgjyed to form the boundary of an octahedron which is homeo-
phic to R? or H? is called a2-manifolds with boundatry morphic to the sphere.

see Figure 80 for examples. Theundaryis the subset

the inverse of the face relation, we de ne te&r of a

- simplex as the set of simplices that contairas a face,
@ = St =f 2K |j g. Sometimes we think of the
star as a set of simplices and sometimes as a set of points,

namely the union of interiors of the simplices in the star.
Figure 80: Thre@-manifolds with boundary, the closed disk, the With the latter interpretation, we can now express Condi-
cylinder, and the Mobius strip. tion 1l more succinctly: the star of every simplexk is

. . . , , homeomorphic tdR?.
of points with neighborhoods homeomorphicH3. It is

a 1-manifold (without boundary), that is, every point is

locally homeomorphic tdR. There is only one type of Data structure. When we store 2-manifold, it is use-
compact, connectettmanifold, namely the closed curve. ful to keep track of which side we are facing and where
In topology, we do not distinguish spaces that are home- we are going so that we can move around ef ciently.
omorphic to each other. Hence, every closed curve is like The core piece of our data structure is a representation
every other one and they are all homeomorphic to the unit of the symmetry group of a triangle. This group is iso-
circle,S* = fx 2 R? jkxk =1g. morphic to the group of permutations of three elements,

65

the vertices of the triangle. We call each permutation Mobious strip in Figure 80. There are also non-orientable,
an ordered triangleand use cyclic shifts and transposi- compac®-manifolds (without boundary), as we can seein
tions to move between them; see Figure 82. We store Figure 83. We use the data structure to decide whether or

ENEXT

_A-A=A) 2 £

c a b
ENEXT ENEXT Figure 83: Two non-orientable, compa@imanifolds, the pro-
Q O Q jective plane on the left and the Klein bottle on the right.
b a c b a c
ENEXT

not a2-manifold is orientable. Note that the cyclic shift

Figure 82: The symmetry group of the triangle consists of six partitions the set of six ordered triangles into taen-

ordered versions. Each ordered triangle has a lead vertbaan [@tions each consisting of three triangles. We say two
lead directed edge. neighboring triangles areonsistently oriented they dis-

agree on the direction of the shared edge, as in Figure 81.
the entire symmetry group in a single node of an abstract Using depth-rst search, we visit all triangles and orient
graph, with arcs between neighboring triangles. Further- them consistently, if possible. At the rst visit, we ori-
more, we store the vertices in a linear arrsiy1::n]. For ~ €ntthe triangle consistent with the preceding, neightgprin
each ordered triangle, we store the index of the lead ver- friangle. At subsequence visits, we check for consistent
tex and a pointer to the neighboring triangle that shares orientation.
the same directed lead edge. A pointer in this context

is the address of a node together with a three-bit inte- ~ boolean 1SORNTBL(;)
ger, , that identi es the ordered version of the triangle if isunmarkedhen . .
we refer to. Suppose for example that we identify the mark ; choose the orientation that contains
ordered versionsbc; bca; cab; bac; cba; adh a triangle bx = ISORNTBL(FNEXT(SYM(;)));
with = 0;1;2;4;5;6, in this sequence. Then we can by = ISORNTB'-(FNEXT(ENEXT§SY|\/I()
move between different ordered versions of the same tri- b, = ISORNTBL(FNEXT(ENEXT*(SYM(;))));
angle using the following functions. return b and by and b,
else
ordTri ENEXT(;) return [orientation of contains]
if 2thenreturn (; (+1)mod 3) endif
else return (; (+1)mod3+4)
endif . There are two places where we return a boolean value. At
the second place, it indicates whether or not we have con-
. sistent orientation in spite of the visited triangle beimg o
ordTri sym(:) i i ion in spi visi iang img

ented prior to the visit. Atthe rst place, the boolean value
indicates whether or not we have found a contradiction to
orientablity so far. A value ofALSE anywhere during the

To get the index of the lead vertex, we use the integer func- computation is propagated to the root of the search tree
tion ORG(;) and to get the pointer to the neighboring telling us that the2-manifold is non-orientable. The run-
triangle, we Us&NEXT(;). ning time is proportional to the number of triangles in the
triangulation of the2-manifold.

return (; (+4) mod 8).

Orientability. A 2-manifold is orientableif it has two

distinct sides, that is, if we move around on one we stay Classification. For the sphere and the torus, it is easy
there and never cross over to the other side. The one exam+to see how to make them out of a sheet of paper. Twist-
ple of a non-orientable manifold we have seen so far is the ing the paper gives a non-oriental2lenanifold. Perhaps

66

most dif cult to understand is the projective plane. Itis CLASSIFICATION THEOREM. The members of the fami-
obtained by gluing each point of the sphere to its antipodal lies S2; T2; T2# T?;::: andP?; P?# P?;::: are non-
point. This way, the entire northern hemisphere is glued homeomorphic and they exhaust the family of com-
to the southern hemisphere. This gives the disk except pact2-manifolds.

that we still need to glue points of the bounding circle (the

equator) in pairs, as shown in the third paper construction .) ,

in Figure 84. The Klein bottle is easier to imagine as it EUler characteristic. Suppose we are given a triangula-

is obtained by twisting the paper just once, same as in the ioN: K, of @ compace-manifold, M. We already know
construction of the Mobius strip. how to decide whether or nd#l is orientable. To deter-

mine its type, we just need to nd its genus, which we do
by counting simplices. ThEuler characteristids

b a a a
= # vertices # edgest# triangles
b ab b b b b b
Let us look at the orientable case rst. We havégagon
a a a a which we triangulate. This is a planar graph with
m + ~ = 2. However,2g edge are counted double, thg

vertices of thedg-gon are all the same, and the outer face
is not a triangle irk . Hence,

Figure 84: From left to right: the sphere, the torus, the grtiye
plane, and the Klein bottle.

There is a general method here that can be used to clas-
sify the compac@-manifolds. Given two of them, we con-
struct a new one by removing an open disk each and glu-
ing the 2-manifolds along the two circles. The resultis which is equal t® 2g. The same analysis can be used
called theconnected surof the two2-manifolds, denoted in the non-orientable case in which we get (n 29+
asM# N. For example, the double torus is the connected 1) (m g)+(° 1) = 2 g. To decide whether
sum of two tori, T?# T?. We can cut up thg-fold torus two compac®-manifolds are homeomorphic it suf ces to
into a at sheet of paper, and the canonical way of doing determine whether they are both orientable or both non-
this gives adg-gon with edges identi ed in pairs as shown grientable and, if they are, whether they have the same

in Figure 85 on the left. The numbagiis called thegenus Euler characteristic. This can be done in time linear in the
of the manifold. Similarly, we can get new non-orientable number of simplices in their triangulations.

(n 4g+1) (m 2g9+(1)
(n m+7) 29

This resultis in sharp contrast to the higher-dimensional
case. The classi cation of compa8tmanifolds has been
a longstanding open problem in Mathematics. Perhaps
the recent proof of the Poincaré conjecture by Perelman
as az brings us close to a resolution. Beyond three dimensions,
the situation is hopeless, that is, deciding whether or not
a as two triangulated compact manifolds of dimension four or
ay as higher are homeomorphic is undecidable.

ag ai

ag aj

Figure 85: The polygonal schema in standard form for the loub
torus and the double Klein bottle.

manifolds from the projective plan®?, by forming con-
nected sums. Cutting up thiefold projective plane gives
a2g-gon with edges identi ed in pairs as shown in Figure
85 on the right. We note that the constructions of the pro-
jective plane and the Klein bottle in Figure 84 are both not
in standard form. A remarkable result which is now more
than a century old is that every comp@etanifold can be
cut up to give a standard polygonal schema. This implies
a classi cation of the possibilities.

67

19 Homology spanning tree while the cyclomatic number is independent
of that choice.

In topology, the main focus is not on geometric size but

rather on how a space is connected. The most elementarygimpjicial complexes. We begin with a combinatorial
notion distinguishes whether we can go from one place representation of a topological space. Using a nite
to another. If not then there is a gap we cannot bridge. ground set of verticesy, we call a subset V an

Next we would ask whether there is a loop going around gpiract simplex Its dimensionis one less than the car-
an obstacle, or whether there is a void missing in the SPace ginality,dim =j j 1. A faceis asubset

Homology is a formalization of these ideas. It gives a way

to de ne and count holes using algebra. DEFINITION. An abstract simplicial complegverV is a
systemK 2V suchthat 2 K and implies

The cyclomatic number of a graph. To motivate the 2K.

more general concepts, consider a connected gréph, hedi iorof K is the | di . f .
with n vertices andn edges. A spanning tree has 1 Thedimensiorof K is the largest dimension of any sim-

edges and every additional edge forms a unique cycle to-pl_e),(inK. Agraphis .thus d-dimensional abstract sim-
gether with edges in this tree; see Figure 86. Every other plicial complex. Just like for graphs, we sometimes think
of K as an abstract structure and at other times as a geo-

metric object consisting of geometric simplices. In the lat
ter interpretation, we glue the simplices along sharedface
to form ageometric realizatiomf K , denoted afK j. We
sayK triangulatesa spaceX if there is a homeomorphism
h: X!j Kj. We have seefi- and2-dimensional exam-
ples in the preceding sections. Theundaryof a simplex

is the collection of co-dimension one faces,

@ = f jdim =dim 1g:
Figure 86: A tree with three additional edges de ning the sam If dim = pthen the boundary consistspf 1 (p 1)-
number of cycles. simplices. Everf{p 1)-simplex hap (p 2)-simplices
in its own boundary. This way-we g¢b t;i) PP 2)-
cycle inG can be written as a sum of these (n 1) simplices, counting each of t%l = (P 2
cycles. To make this concrete, we de neycleas asub- dimensional faces of twice.

set of the edges such that every vertex belongs to an even
number of these edges. A cycle does not need to be con-
nected. Thesumof two cycles is the symmetric difference
of the two sets such that multiple edges erase each othe
in pairs. Clearly, the sum of two cycles is again a cy-
cle. Every cycle, , in G contains some positive number
of edges that do not belong to the spanning tree. Call-
ing these edges;; ey;:::; e and the cycles they de ne C = a 1+a 2+ :i+an n;

D o2lll k., We claim that .

Chain complexes. We now generalize the cycles in
Igraphs to cycles of different dimensions in simplicial com-
plexes. Ap-chainis a set ofp-simplices inK . Thesum

of two p-chains is their symmetric difference. We usually
write the sets as formal sums,

= ot ot N where thea; andb; are eithei0 or 1. Addition can then be

. L. done using modul@ arithmetic,
To see thisassumethat 1+ >+ :::+ (isdifferent 9

from . Then + isagain acycl_e but it contains no edges c+od = (ar+2b) 1+ i+ (an+2bn) n

that do not belong to the spanning tree. Henee = ;

and therefore = , as claimed. This implies that the wherea; +; by is the exclusive or operation. We simplify
m n+1 cycles form a basis of the group of cycles which notation by dropping the subscript but note that the two
motivates us to calin n + 1 thecyclomatic numbeof plus signs are different, one modulo two and the other a
the graph. Note that the basis depends on the choice offormal notation separating elements in a set. pfubains

68

form a group, which we denote &€,; +) or simply C,.

Note that the boundary of gsimplex is a(p 1)-chain,

an element oCp—1. Extending this concept linearly, we
de ne the boundary of @-chain as the sum of boundaries
of its simplices@6 a;@ 1+ :::+ an@ . The boundary

is thus a map between chain groups and we sometimes
write the dimension as index for clarity,

@:Cp! Cpu: Figure 88: Thel-cycles and are notl-boundaries. Adding

. . . thel-boundary' to gives al-cycle homologous to.
It is @ homomorphism sinc@(c+ d) = @c+ @d. The

in nite sequence of chain groups connected by boundary
homomorphisms is called thehain compleof K. All asc ¢ Note thafc] = [cJwhenevec ¢ Also note
groups of dimension smaller th@and larger than the di- that[c+ d] = [¢™+ dfwhenever c“andd d& We

mension ofK are trivial. It is convenient to keep them se this as a de nition of addition for homology classes, so

around to avoid special cases at the endg-¢ycleis a we again have a group. For example, thet homology
p-chain whose boundary is zero. The sum of pwvoycles group of the torus consists of four elemeri} = By,

is again ap-cycle so we get a subgroug, Cp. A []= +By[]= +Byand +]= + +B;.We
p-boundaryis ap-chain that is the boundary of(a + 1) - often draw the elements as the corners of a cube of some

chain. The sum of twp-boundaries is again@boundary dimension; see Figure 89. If the dimension ithen it has
so we get another subgroup, Cp, Taking the bound-

ary twice in a row gives zero for every simplex and thus vl [y+3]
for every chain, that is(@(@+1d) = 0. It follows that
By is a subgroup oZ,. We can therefore draw the chain

complex as in Figure 87.
o1 vl

Figure 89: The four homology classesldf are generated by
two classes],] and[].

Op1 2B corners. The dimension is also the number of classes
needed to generate the group, the size of the basis. For
the p-th homology group, this number ig, = rank H, =

Figure 87: The chain complex consisting of a linear sequence 109, jHpj, thep-th Betti numberFor the torus we have
of chain, cycle, and boundary groups connected by homomor-

phisms. o = L
1 =2
2 = L

Homology groups. We would like to talk about cycles o

but ignore the boundaries since they do not go around a@nd p = 0 forall p 6 0;1;2. Every0-chain is a0-
hole. At the same time, we would like to consider two Cycle. TwoO-cycles are homologous if they are both the
cycles the same if they differ by a boundary. See Figure SUM of an even number or both of an odd number of ver-
88 for a few1-cycles, some of which ateboundariesand ~ tices. Hence o =log, 2 = 1. We have seen the reason
some of which are not. This is achieved by taking the for 1 = 2 before. Finally, there are only tw2-cycles,
quotient of the cycle group and the boundary group. The namelyO and the set of all triangles. The latter is not a
result is thep-th homology group boundary, hence; =log,2 = 1.

Hp = Zp=Bp: .
Boundary matrices. To compute homology groups and
Its elements are of the forfg] = c+ By, wherecis ap- Betti numbers, we use a matrix representation of the sim-
cycle. [c] is called ahomology classc is arepresentative plicial complex. Speci cally, we store the boundary ho-
of [c], and any two cycles ific] are homologousienoted momorphism for each dimension, setti@[i;j] = 1 if

69

thei-th (p 1)-simplex is in the boundary of thieth p- ing a linear system. We write it recursively, calling it with
simplex, and@li;j] = 0, otherwise. For example, ifthe m=1.
complex consists of all faces of the tetrahedron, then the

boundary matrices are void REDUCE(m)
if 9k;1 mwith @[k;1]=1 then

@ = I:IO 0 0O D exchange rowm andk and columnsn andl;
|:1| 110 0 OD for i=m+1to np—,do
00 1 10 if @[I, m] =1 then
@ = % 1010 1 E add rowm to rowi
001011 endif
1 1 endfor ;
1100 for j=m+1to nydo
010 if @[m;j]=1 then
@ = 110 add colummm to columnj
001 endif
101 endfor ;
|:O| |0:| 11 REDUCE(mM + 1)
1 endif
@ = % E For each recursive call, we have at most a linear number
1 of row and column operations. The total running time is

therefore at most cubic in the number of simplices. Figure
Given ap-chain as a column vectoy, its boundary is 90 shows how we interpret the result. Speci cally, the
computed by matrix multiplication@v. The resultisa number of zero columns is the rank of the cycle group,
combination of columns in thp-th boundary matrix, as Z,, and the number dfs in the diagonal is the rank of the
speci ed byv. Thus,v is ap-cycle iff @v =0 andv is a boundary groupB,—1. The Betti number is the difference,
p-boundary iff there is1 such thai@-+1u = v.

p = rank Z, rankByp;

taking the rank of the boundary group from the reduced
matrix one dimension up. Working on our example, we
get the following reduced matrices.

Matrix reduction. Letting n, be the number ofp-
simplices inK , we note that it is also the rank of tipeth
chain group,n, = rank Cp. The p-th boundary matrix

thus hasip—; rows andny columns. To gure the sizes of @ = I:'0 0 0 0 ;
the cycle and boundary groups, and thus of the homology |:1| 0000 0 L1
groups, we reduce the matrix to normal form, as shown 1000 0
in Figure 90. The algorithm of choice uses column and @ = % 0100 0 E
0 0O0O0OO0O
———rankZ, ——— 1 0 0
T _ 010
rankBp.1 @ = 0 0O E
rankCyp.1 0 00
0 00O
1 1
1
a - HH
Figure 90: Thep-th boundary matrix in normal form. The entries 0

in the shaded portion of the diagonal drand all other entries N

are0. Writing z, = rank Z, andb, = rank By, we getzg = 4
from the zeroth antly = 3 from the rst reduced bound-

row operations similar to Gaussian elimination for solv- ary matrix. Hence ¢ = zg = Ip = 1. Furthermore,

70

z; =3 andbp =3 giving 1 =0,z =1 andb, = 1
giving 2 =0, andzz = 0 giving 3 = 0. These are the
Betti numbers of the closed ball.

Euler-Poincaré Theorem. TheEuler characteristiof a
simplicial complex is the alternating sum of simplex num-
bers,
1
= (1)Pnp:
p=0

Recalling thamn, is the rank of thep-th chain group and
that it equals the rank of theth cycle group plus the rank
ofthe(p 1)-st boundary group, we get

[—
(DP(zp+ 1)

p=0
L1
= (DP(zp by);
p=0

which is the same as the alternating sum of Betti num-
bers. To appreciate the beauty of this result, we need to
know that the Betti numbers do not depend on the trian-
gulation chosen for the space. The proof of this property
is technical and omitted. This now implies that the Euler

characteristic is an invariant of the space, same as the Bett
numbers.

, C—1
EULER-POINCARE THEOREM. = (1) ,.

71

Fifth Homework Assignment

Write the solution to each problem on a single page. The
deadline for handing in solutions is November 13.

Problem 1. (20 points). LetG = (V;E) be a maxi-
mally connected planar graph and recall tfidt =
f1;2;:::;kg. A vertexk-coloringis a mapping
V ! [K] such that (u) 6 (v) wheneveu 6 v
are adjacent, and amdgek-coloring is a mapping

:E ! [K]suchthat (e) 8 (f)whenever6 f
bound a common triangle. Prove that3fhas a ver-
tex 4-coloring then it also has an edgecoloring.

Problem 2. (20 = 10 + 10 points). LetK be a set of
triangles together with their edges and vertices. The
vertices are represented by a linear array, as usual, but
there is no particular ordering information in the way
the edges and triangles are given. In other words, the
edges are just a list of index pairs and the triangles
are a list of index triplets into the vertex array.

(a) Give an algorithm that decides whether or not
K is a triangulation of @-manifold.

(b) Analyze your algorithm and collect credit
points if the running time of your algorithm is
linear in the number of triangles.

Problem 3. (20 = 5+7+8 points). Determine the type of
2-manifold with boundary obtained by the following
constructions.

(@) Remove a cylinder from a torus in such a way
that the rest of the torus remains connected.

(b) Remove a disk from the projective plane.
(c) Remove a Mobius strip from a Klein bottle.

Whenever we remove a piece, we do this like cutting
with scissors so that the remainder is still closed, in
each case a-manifold with boundary.

Problem4. (20=5+5+5+5 points). Recall that the
sphere is the space of points at unit distance from the
origin in three-dimensional Euclidean spa&2, =
fx2 R3jkxk=1g.

(@) Give a triangulation 0$?.

(b) Give the corresponding boundary matrices.
(c) Reduce the boundary matrices.

(d) Give the Betti numbers &?.

72

Problem 5. (20 = 10 + 10 points). Thedunce caps ob-

tained by gluing the three edges of a triangular sheet
of paper to each other. [After gluing the rst two
edges you get a cone, with the glued edges forming a
seam connecting the cone point with the rim. In the
nal step, wrap the seam around the rim, gluing all
three edges to each other. To imagine how this work,
it might help to think of the nal result as similar to
the shell of a snale.]

(a) Is the dunce capZzmanifold? Justify your an-
swer.

(b) Give a triangulation of the dunce cap, making
sure that no two edges connect the same two
vertices and no two triangles connect the same
three vertices.

VI GEOMETRICALGORITHMS

20 Plane-Sweep
21 Delaunay Triangulations
22 Alpha Shapes
Sixth Homework Assignment

73

20 PIane-Sweep The algorithm is illustrated in Figure 92, which shows the
addition of the sixth point in the data set.

Plane-sweep is an algorithmic paradigm that emerges in
the study of two-dimensional geometric problems. The
idea is to sweep the plane with a line and perform the com-
putations in the sequence the data is encountered. In this
section, we solve three problems with this paradigm: we
construct the convex hull of a set of points, we triangulate
the convex hull using the points as vertices, and we test a
set of line segments for crossings.

Convex hull. LetS be a nite set of points in the plane,
each given by its two coordinates. Thenvex hullof S,
denoted byconvS, is the smallest convex set that con-
tains S. Figure 91 illustrates the de nition for a set of
nine points. Imagine the points as solid nails in a planar

board. An intuitive construction stretches a rubber band) N
around the nails. After letting go, the nails prevent the Orientation test. A critical test needed to construct the

complete relaxation of the rubber band which will then convex hullis to determine the orientation of a sequence
trace the boundary of the convex hull. of three points. In other words, we need to be able to dis-
tinguish whether we make a left-turn or a right-turn as we
go from the rst to the middle and then the last point in
the sequence. A convenient way to determine the orien-
tation evaluates the determinant of a three-by-three ma-
trix. More precisely, the pointa = (ag;a2), b= (by; by),

c = (c; c) form a left-turn iff

1

Figure 92: The vertical sweep-line passes through point®. T
add 6, we substitute 6 for the sequence of vertices on thedsoun
ary between 3 and 5.

1
1 a3 a
detld b b b o
1 ¢ o

Figure 91: The convgx hull of nine points, which Wg represent The three points form a right-turn iff the determinant is
by the counterclockwise sequence of boundary vertices; @, 3 negative and they lie on a common line iff the determinant
8,9,2. .

IS zero.

To construct the counterclockwise cyclic sequence of boolean LEFT(Points a;b; g
boundary vertices representing the convex hull, we sweep ~ return [ai(lz)+ bu(cz a2)
a vertical line from left to right over the data. At any mo- +ca kp)> 0.
ment in time, the points in front (to the right) of the line
are untouched and the points behind (to the left) of the line
have already been processed.

To see that this formula is correct, we may convince our-
selves that it is correct for three non-collinear pointg, e.
a=(0;0),b=(1;0), andc = (0;1). Remember also
that the determinant measures the area of the triangle and
is therefore a continuous function that passes through zero
only when the three points are collinear. Since we can
Step 2. Construct a counterclockwise triangle from continuously move every left-turn to every other left-turn

the rst three pointsx;X,X3 OF X1X3X>. without leaving the class of left-turns, it follows that the
sign of the determinant is the same for all of them.

Step 1. Sort the points from left to right and relabel

Step 3. Fori from 4 ton, add the next poirt; to the
convex hull of the preceding points by nding the
two lines that pass throughy and support the con- Finding support lines. We use a doubly-linked cyclic
vex hull. list of vertices to represent the convex hull boundary. Each

74

node in the list contains pointers to the next and the previ-

ous nodes. In addition, we have a pointst to the last
vertex added to the list. This vertex is also the rightmost
in the list. We add theé-th point by connecting it to the
vertices ! ptand ! ptidentiedin a counterclock-
wise and a clockwise traversal of the cycle startintasit,

as illustrated in Figure 93. We simplify notation by using

Figure 93: The upper support line passes through the rsttpoi
- pt that forms a left-turn from - ptto - next - pt.

nodes in the parameter list of the orientation test instead would have to add

of the points they store.

= last; create new node with ! pt = i;

while RIGHT(;; ! next)do
= | next
endwhile ;
while LEfFT(;; ! prev)do
= | prev
endwhile ;
I next= ; | prev= ;
I prev= | next= ; last=

The effort to add the-th point can be large, but if it is
then we remove many previously added vertices from the
list. Indeed, each iteration of the for-loop adds only one
vertex to the cyclic list. We charge $2 for the addition,
one dollar for the cost of adding and the other to pay for
the future deletion, if any. The extra dollars pay for all
iterations of the while-loops, except for the rst and the
last. This implies that we spend only constant amortized
time per point. After sorting the points from left to right,
we can therefore construct the convex hullnopoints in
time O().

Triangulation. The same plane-sweep algorithm can be
used to decompose the convex hull into triangles. All

we need to change is that points and edges are never re-
moved and a new point is connected to every point exam-

ined during the two while-loops. We de ne(geometric)
triangulation of a nite set of pointsS in the plane as a

75

maximally connected straight-line embedding of a planar
graph whose vertices are mapped to pointS.ifrigure 94

shows the triangulation of the nine pointsin Figure 91 con-
structed by the plane-sweep algorithm. A triangulation is

Figure 94: Triangulation constructed with the plane-swaigp-
rithm.

not necessarily a maximally connected planar graph since
the prescribed placement of the points xes the boundary
of the outer face to be the boundary of the convex hull.
Letting k be the number of edges of that boundary, we
3 more edges to get a maximally
connected planar graph. It follows that the triangulation
hasm = 3n (k+3) edgesand = 2n (k + 2)
triangles.

Line segment intersection. As a third application of the
plane-sweep paradigm, we consider the problem of decid-
ing whether or noh given line segments have pairwise
disjoint interiors. We allow line segments to share end-
points but we do not allow them to cross or to overlap. We
may interpret this problem as deciding whether or not a
straight-line drawing of a graph is an embedding. To sim-
plify the description of the algorithm, we assume no three
endpoints are collinear, so we only have to worry about
crossings and not about other overlaps.

How can we decide whether or not a line segment
with endpointu = (uz;uz) andv = (vi;Vp) crosses
another line segment with endpoimis= (pz1;p2) and
g = (q;)? Figure 95 illustrates the question by show-
ing the four different cases of how two line segments and
the lines they span can intersect. The line segments cross
iff uv intersects the line giqandpqintersects the line of
uv. This condition can be checked using the orientation
test.

boolean CrosgPoints u;v;p;q)
return [(LEFT(u;V;p) xor LEFT(u;Vv;q)) and
(LEFT(p; g; U) xor LEFT(p; d; V)]

We can use the above function to test all pairs of line

segments, which takes time 1@%).

u \ “ \ “ \
v u p
o B pe
/) 0’ ¥
q q q
Figure 95: Three pairs of non-crossing and one pair of cnossi
line segments.

Plane-sweep algorithm. We obtain a faster algorithm

Case 2.2 x; is right endpoint of the line segment
XiXj. Therefore,i > j . Letuv andpq be
the predecessor and the successox;ofj. If
Crosqu;V; p; g then report the crossing and
stop. Deletejx; from the dictionary.

We do an insertion into the dictionary for each left end-
point and a deletion from the dictionary for each right
endpoint, both in time @dgn). In addition, we do at
most two crossing tests per endpoint, which takes constant
time. In total, the algorithm takes time @logn) to test
whether a set afi line segments contains two that cross.

by sweeping the plane with a vertical line from left to
right, as before. To avoid special cases, we assume that
no two endpoints are the same or lie on a common verti-
cal line. During the sweep, we maintain the subset of line
segments that intersect the sweep-line in the order they
meet the line, as shown in Figure 96. We store this subset

Q

O\
o/
o—_|

|

Figure 96: Five of the line segments intersect the sweeapdin
its current position and two of them cross.

in a dictionary, which is updated at every endpoint. Only
line segments that are adjacent in the ordering along the
sweep-line are tested for crossings. Indeed, two line seg-
ments that cross are adjacent right before the sweep-line
passes through the crossing, if not earlier.

Step 1. Sortthe2n endpoints from left to right and re-

point still remembers the index of the other endpoint
of its line segment.

Step 2. Fori from 1 to2n, process thé-th endpoint
as follows:

Case 2.1 x; is left endpoint of the line segment
XiXj. Therefore,i < j . Insertx;x;j into
the dictionary and letiv and pq be its prede-
cessor and successor. IfROSHU; V; Xi; Xj)
or CRosgp; ; Xi; Xj) then report the crossing
and stop.

76

21 Delaunay Triangulations Voronoi diagram. We introduce the Delaunay triangu-
lation indirectly, by rst de ning a particular decomposi-

The triangulations constructing by plane-sweep are typi- tion of the plane mtp regions, one per point in -the nite
cally of inferior quality, that is, there are many long and daf[a seI_S. The region of the pointi in S contains all
skinny triangles and therefore many small and many large POINtSX in the plane that are at least as close &5 to any
angles. We study Delaunay triangulations which distin- other point inS, that s,

guish themselves from all other triangulations by a num- Vo = fx2R%jkx uk k x vk;v2 Sg;
ber of nice properties, including they have fast algorithms _
and they avoid small angles to the extent possible. wherekx uk =[(x1 u1)®+(x2 Uz)?]Y?isthe Eu-

clidean distance between the poirtandu. We refer to
Vu as theVoronoi regionof u. It is closed and its bound-

Plane-sweep versus Delaunay triangulation. Figures @y consists o¥/oronoi edgesvhichV, shares with neigh-
97 and 98 show two triangulations of the same set of POring Voronoi regions. A Voronoi edge endsVoronoi
points, one constructed by plane-sweep and the other theverticeswhich it shares with other Voronoi edges. The

Delaunay triangulation. The angles in the Delaunay trian- Voronoi diagramof S is the collection of Voronoi regions,
edges and vertices. Figure 99 illustrates the de nitions.

Let n be the number of points i8. We list some of the
properties that will be important later.

Figure 97: Triangulation constructed by plane-sweep. 8a@n
the same vertical line are processed from bottom to top.

gulation seem consistently larger than those in the plane-

sweep triangulation. This is not a coincidence and it can Figure 99: The (solid) Voronoi diagram drawn above the (dot-

be proved that the Delaunay triangulation maximizes the ted) Delaunay triangulation of the same twenty-one poitasit

minimum angle for every input set. Both triangulations gulated in Figures 97 and 98. Some of the Voronoi edges are too
far out to tinto the picture.

Each Voronoi region is a convex polygon constructed
as the intersection af 1 closed half-planes.

The Voronoi regionV,, is bounded (nite) iffu lies in
the interior of the convex hull ds.

The Voronoi regions have pairwise disjoint interiors
and together cover the entire plane.

Delaunay triangulation. We de ne theDelaunay trian-
Figure 98: Delaunay triangulation of the same twenty-oriatso gulationas the straight-line dual of the Voronoi diagram.
triangulated in Figure 97. Speci cally, for every pair of Voronoi region¥, andV,

that share an edge, we draw the line segment fucimv.
contain the edges that bound the convex hull of the input By construction, every Voronoi vertex, hasj 3 clos-
set. est input points. Usually there are exactly three closest

77

points, u; v; w, in which case the triangle they span be- cally Delaunay if it bounds the convex hull 8fand thus
longs to the Delaunay triangulation. Note tlat equally belongs to only one triangle. The local condition on the
far fromu, v, andw and further from all other points in edges implies a global property.

S. This implies theempty circle propertyf Delaunay tri-

angles: all points o6 f u;v;wg lie outside the circum- D auNAY LEMMA. If every edge in a triangulatiol

scribed circle ofuvw. Similarly, for each Delaunay edge of S is locally Delaunay thek is the Delaunay tri-
uv, there is a circle that passes throughndv such that angulation ofS.

all points of S f u;vg lie outside the circle. For exam-

ple, the circle centered at the midpoint of the Voronoi edge Although every edge of the Delaunay triangulation is lo-
shared byv, andVy is empty in this sense. This property .oy pDelaunay, the Delaunay Lemma is not trivial. In-

can be used to prove that the edge skeleton of the Dela”'deed,K may contain edges that are locally Delaunay but
nay triangulation is a straight-line embedding of a planar 44 not belong to the Delaunay triangulation, as shown in
graph. Figure 101. We omit the proof of the lemma.

Figure 100: A Voronoi vertex of degree 5 and the correspamdin ~ Figure 101: The edgev is locally Delaunay but does not belong
pentagon in the Delaunay triangulation. The dotted edges co to the Delaunay triangulation.

plete the triangulation by decomposing the pentagon inteeth

triangles.

Edge-flipping. The Delaunay Lemma suggests we con-
struct the Delaunay triangulation by rst constructing an
arbitrary triangulation of the point s& and then modify-
ing it locally to make all edges ID. The idea is to look for
non-ID edges and to ip them, as illustrated in Figure 102.
Indeed, ifuv is a non-ID edge shared by triangleg and

Now suppose there is a vertex with degree 3. It cor-
responds to a polygon with> 3 edges in the Delaunay
triangulation, as illustrated in Figure 100. Strictly skea
ing, the Delaunay triangulation is no longer a triangulatio
but we can complete it to a triangulation by decompos-
ing eachj -gon intoj 2 triangles. This corresponds to
perturbing the data points every so slightly such that the
degreef Voronoi vertices are resolved into trees in which B
j 2degree-3 vertices are connected by 3 tiny edges. q

Local Delaunayhood. Given a triangulation of a nite
point setS, we can test whether or not it is the Delaunay u
triangulation by testing each edge against the two trian-
gles that share the edge. Suppose the edgia the tri-
angulationT is shared by the trianglas/p anduvg. We

call uv locally Delaunay or ID for short, if g lies on or
outside the circle that passes througtv; p. The condi- Figure 102: The edgav is non-ID and can be ipped to the edge
tion is symmetric inp andq because the circle that passes pg, which is ID.

throughu; v; p intersects the rst circle in pointa andv.

It follows thatp lies on or outside the circle af; v; qiff g uvq thenupvqis a convex quadrilateral arftipping uv
lies on or outside the circle af; v; p. We also caluv lo- means substituting one diagonal for the other, namely

78

for uv. Note that ifuv is non-ID thenpqis ID. It is im-
portant that the algorithm nds non-ID edges quickly. For
this purpose, we use a stack of edges. Initially, we push
all edges on the stack and mark them.

while stack is non-emptgio
pop edgauv from stack and unmark it;
if uvis non-IDthen
substitutepq for uv;
for ab2f up;pv;vq;qgdo
if abis unmarkedhen
pushabon the stack and mark it
endif
endfor
endif
endwhile

Figure 103: The plane passing through; v*; p* intersects the
paraboloid in an ellipse whose projection iR passes through
the pointsu; v; p. The pointg* lies below the plane iffy lies
inside the circle.

against. We note thatlies inside the circle ifff* lies be-

The marks avoid multiple copies of the same edge on the low the plane. The latter test can be based on the sign of

stack. This implies that at any one moment the size of the
stack is less thaBn. Note also that initially the stack con-
tains all non-ID edges and that this property is maintained
as an invariant of the algorithm. The Delaunay Lemma
implies that when the algorithm halts, which is when the
stack is empty, then the triangulation is the Delaunay tri-
angulation. However, it is not yet clear that the algorithm
terminates. Indeed, the stack can grow and shrink dur-
ing the course of the algorithm, which makes it dif cult to
prove that it ever runs empty.

In-circle test. Before studying the termination of the al-
gorithm, we look into the question of distinguishing ID
from non-ID edges. As before we assume that the edge
is shared by the trianglas/p anduvqin the current trian-
gulation. Recall thatv is ID iff g lies outside the circle
that passes through v; p. Letf : R? ! R be de ned by

f (x) = x% + x3. As illustrated in Figure 103, the graph
of this function is a paraboloid in three-dimensional space
and we writex™ = (x1;X2;f (x)) for the vertical projec-
tion of the pointx onto the paraboloid. Assuming the three
pointsu; v; p do not lie on a common line then the points
u*;v*;p* lie on a non-vertical plane that is the graph of
a functionh(x) = x 1+ x 2+ . The projection of the
intersection of the paraboloid and the plane back Rfo

is given by

0

f (x)

2 2

h(x)
X1

X2 ;

which is the equation of a circle. This circle passes
throughu; v; p so it is the circle we have to compaege

79

the determinant of the 4-by-4 matrix

1]
1 u; u u?+uj

_ @ Vi Vo V2+ V3 E
pL P2 Pi+ P
1 g @ G+

Exchanging two rows in the matrix changes the sign.
While the in-circle test should be insensitive to the order
of the rst three points, the sign of the determinant is not.
We correct the change using the sign of the determinant of
the 3-by-3 matrix that keeps track of the orderingio¥; p
along the circle,

1 1
1 u;p uz

= L[v v, 1
1 pop

Now we claim thats is inside the circle ofi; v; p iff the
two determinants have opposite signs:

boolean
return

INCIRCLE(Points u;v;p;0)
det det <O.

We rst show that the boolean function is correct o=
(0;0),v=(1;0),p=(0;1), andg = (0;0:5). The sign

of the product of determinants remains unchanged if we
continuously move the points and avoid the con gurations
that make either determinant zero, which are whew p

are collinear and when; v; p; q are cocircular. We can
change any con guration wherg is inside the circle of

u; v; p continuously into the special con guration without
going through zero, which implies the correctness of the
function for general input points.

Termination and running time. To prove the edge- ip
algorithm terminates, we imagine the triangulation lifted
to R®. We do this by projecting the vertices vertically
onto the paraboloid, as before, and connecting them with
straight edges and triangles in space. wetbe an edge
shared by trianglesvp anduvq that is ipped to pq by

the algorithm. It follows the line segmenis andpqcross
and their endpoints form a convex quadrilateral, as shown
in Figure 104. After lifting the two line segments, we get

Figure 104: A ip in the plane lifts to a tetrahedron in space i
which the ID edge passes below the non-ID edge.

u*v™ passing abovp™q*. We may thus think of the ip

as gluing the tetrahedran*v*p*q* underneath the sur-
face obtained by lifting the triangulation. The surface is
pushed down by each ip and never pushed back up. The
removed edge is now above the new surface and can there-
fore not be reintroduced ater ip. It follows that the
algorithm performs at most, ips and thus takes at most
time On?) to construct the Delaunay triangulation $f
There are faster algorithms that work in timerQg¢gn)

but we prefer the suboptimal method because it is simpler
and it reveals more about Delaunay triangulations than the
other algorithms.

The lifting of the input points td&R® leads to an interest-
ing interpretation of the edge- ip algorithm. Starting Wit
a monotone triangulated surface passing through the lifted
points, we glue tetrahedra below the surface until we reach
the unique convex surface that passes through the points.
The projection of this convex surface is the Delaunay tri-
angulation of the points in the plane. This also gives a
reinterpretation of the Delaunay Lemma in terms of con-
vex and concave edges of the surface.

80

22 Alpha Shapes plex as the dual of the Voronoi decomposition of the union
of disks. This time around, we do this more formally. Let-

Many practical applications of geometry have to do with ting C be a nite collgction of sets, thaerveof C is the
the intuitive but vague concept of the shape of a nite point SyStem of subcollections that have a non-empty common

set. To make this idea concrete, we use the distances belntersection,

tween the points to identify subcomplexes of the Delaunay ~ 1
triangulation that represent that shape at different kevél NvC = fX Cj X #6.g:
resolution.

1
This is an abstrﬁimplicial complex sinceX 6 ; and
Y X implies Y 6 ;. Forexample,ifC is the collec-

Union of disks. Let S be a set oh points inR?. For tjon of Voronoi regions theNrv C is an abstract version
eachr 0, we writeB,(r) = fx 2 R® j kx uk of the Delaunay triangulation. More speci cally, this is
rg for th sed disk with center and radiusr. Let true provide the points are in general position and in par-
U(r) = | <PBu(r) be the union of the disks. We de- ticular no four points lie on a common circle. We will as-
compose this union into convex sets of the fdRu(r) = sume this for the remainder of this section. We say the De-
Bu(r)\ Vu. Then launay triangulation is geometric realizatiorof Nrv C,
. .] namely the one obtained by mapping each Voronoi region
(i) Ru(r) is closed and convex for every poiat2 S (a vertex in the abstract simplicial complex) to the gener-
and every radius 0; ating point. All edges and triangles are just convex hulls
(i) Ru(r) andR,(r) have disjoint interiors wheneverthe of their incident vertices. To go from the Delaunay trian-
two points,u andv, are different; gulation to the alpha complex, we substitute the regions
(i) U(r)= sRu(r). Ru(r) fortheV,. Speci cally,
We illustrate this decomposition in Figure 105. Each re- Alpha(r) = Nrv fRy(r)ju2 Sg:

gionRy(r) is the intersection ot 1 closed half-planes

and a closed disk. All these sets are closed and convex, ! i
which implies (i). The Voronoi regions have disjoint inte- ©f Voronoi regions. We can therefore dradpha(r) as

riors, which implies (ii). Finally, take a point 2 U(r) a subcomplex of the Delaunay triangulation; see Figure

and letu be a point inS with x 2 V. Thenx 2 By(r) 105. We call this gepmetric realization éipha(r) the
and thereforex 2 Ry(x). This implies (). alpha complexor radiusr, denoted a#\(r). Thealpha

shapefor the same radius is the underlying space of the

Clearly, this is isomorphic to a subcomplex of the nerve

alpha complexA(r)j.
ya N— The nerve preserves the way the union is connected.
/ \ In particular, their Betti numbers are the same, that is,
\ . \ i | p(U(r)) = p(A(r)) for all dimensions and all radii
o r. This implies that the union and the alpha shape have
g — N\ the same number of components and the same number of
\ holes. For example, in Figure 105 both have one compo-
/ g nent and two holes. We omit the proof of this property.
/ i \ Filtration. We are interested in the sequence of alpha
shapes as the radius grows from zero to in nity. Since

. RN 7

— T growing r grows the region®y(r), the nerve can only
get bigger. In other word#\(r) A(s) whenever s.
There are only nitely many subcomplexes of the Delau-
nay triangulation. Hence, we get a nite sequence of alpha
complexes. WritingA; for thei-th alpha complex, we get
the following nested sequence,

Figure 105: The Voronoi decomposition of a union of eighkdis
in the plane and superimposed dual alpha complex.

Nerve. Similarto de ning the Delaunay triangulation as
the dual of the Voronoi diagram, we de ne the alpha com- S=A; Ay, ::: Ax=D;

81

whereD denotes the Delaunay triangulation f We At this moment, we have a triangulated disk but not yet the

call such a sequence of complexeSl@ation. We illus- entire Delaunay triangulation since the triangteland the

trate this construction in Figure 106. The sequence of al- edgebdare still missing. Each step is generic except when
we add two equally long edges Ag;.

Compatible ordering of simplices. We can represent
the entire lItration of alpha complexes compactly by sort-
ing the simplices in the order they join the growing com-

plices iscompatiblewith the Itration if

1. the simplices iMA; precede the ones not iy; for
eachi;

2. the faces of a simplex precede the simplex.

For example, the sequence

Figure 106: A nite sequence of unions of disks, all deconmgubs
by the same Voronoi diagram. a;b;c;d;e;f; g; hah; bg ab;ef,;

N : de; gh; cd; fg; cg; cf ; bh; abh ce;
pha complexes begins with a setrofsolated vertices, the cde cfg: cef : ch: beh cgh: bdt bed
points inS. To go from one complex to the next, we either & Clg, cet ch, ah
add an edge, we adda tr_langle, orwe a_dd a pair consisting;q compatible with the ltration in Figure 106. Every alpha
OT a tr_|ang_le with one of its edges. In Flg_ure 106, we be- complex is a pre x of the compatible sequence but not
gin with eight vertices and get the fallowing sequence of necessarily the other way round. Condition 2 guarantees
alpha complexes. that every pre x is a complex, whether an alpha complex

A, = fab;c;d;e;f;g;hy; or not. We thus get a ner ltration of complexes

A, = Ai[f ahg;

As = Alf ba ;=Ko Ki i Kmpm=D;

As; = As[f abefg; whereK is the set of simplices from; to . To con-

As = As[f deg; struct the compatible ordering, we just need to compute
for each Delaunay simplex the radius= r(i) such that

As = As[f ghg, i 2 A(r) iff r rj. For a vertex, this radius is zero.

A7 = Agl[f cadg For a triangle, this is the radius of the circumcircle. For

As = A7[f fgg;

Ag = Ag [f Cgg:
Going fromA- to Ag, we get for the rst time al-cycle,
which bounds a hole in the embedding As, this hole is

cut into two. This is the alpha complex depicted in Figure
105. We continue.

A = Ag[f cfg
A1n = Ajgp[f abh;blyg;
A = Ag[f cde;ce; an edge, we have two cases. Leand be the angles

opposite the edge; inside the two incident triangles. We
have' + > 180 because of the empty circle property.

Figure 107: Left: the middle edge belongs to two acute tiiesg
Right: it belongs to an obtuse and an acute triangle.

Az = Agp[f cfgg

Aa = Ag[f cefg;
Ais = Auw[f bech;chy; CAsSEL.'< 90°and < 90°. Thenr; = r(;) is half
Aig = Ags[f cghg: the length of the edge.

82

Case2.' 90°. Thenr; = rj, where j is the incident
triangle with anglé .

Both cases are illustrated in Figure 107. In Case 2, the
edge ; enters the growing alpha complex together with
the triangle j. The total number of simplices in the De-
launay triangulation isn < 6n. The threshold radii can
be computed in time @. Sorting the simplices into
the compatible ordering can therefore be done in time
O(nlogn).

Betti numbers. In two dimensions, Betti numbers can
be computed directly, without resorting to boundary matri-
ces. The only two possibly non-zero Betti numbers are
the number of components, and, the number of holes.
We compute the Betti numbers Kf; by adding the sim-
plices in order.

0= 1=0;
for i=1to j do
switch dim j:

case 0 g= o+1;
case 1: letu;v be the endpoints ofj;
if FIND(u)= FIND(V)then 1= ;1+1
else o= o 1,
UNION(U; V)
endif
case 2. 1= 1 1
endswitch
endfor .

All we need is tell apart the two cases whegnis an edge.
This is done using a union- nd data structure maintaining
the components of the alpha complex in amortized time

(n) per simplex. The total running time of the algorithm
for computing Betti numbers is thereforer©®((n)).

83

Sixth Homework Assignment

Write the solution to each problem on a single page. The
deadline for handing in solutions is November 25.

Problem 1. (20 points). LetS be a set ofn unit disks
in the Euclidean plane, each given by its center and
radius, which is one. Give an algorithm that decides
whether any two of the disks i intersect.

Problem 2. (20 = 10 + 10 points). LetS be a set of
n points in the Euclidean plane. Tl@abriel graph
connects points; v 2 S with a straight edge if

ku vk? ku pk®+kv pk?
for every pointpin S.

(a) Show that the Grabriel graph is a subgraph of
the edge skeleton of the Delaunay triangulation.

(b) Is the Gabriel graph necessarily connected?
Justify your answer.

Problem 3. (20 = 10 + 10 points). Consider a set of
3 closed disks in the Euclidean plane. The disks are
allowed to touch but no two of them have an interior
pointin common.

(@) Show that the number of touching pairs of disks
isatmost3n 6.

(b) Give a construction that achieves the upper
boundin (a) foranyn 3.

Problem 4. (20 = 10 + 10 points). LetK be a triangula-
tion of aset oin 3 points in the plane. Ldt be a
line that avoids all the points.

(a) Prove thal intersects at mostn 4 of the
edgesirK.

(b) Give a construction for whicl. achieves the
upper bound in (a) forany 3.

Problem 5. (20 points). LetS be a set oh points in the
Euclidean plane, consider its Delaunay triangulation
and the corresponding ltration of alpha complexes,

S=A1 Ay it A

Under what conditions is it true tha; andA 41 dif-
fer by a single simplex forevery i m 1?

84

VI NP-COMPLETENESS

23 Easy and Hard Problems

24 NP-Complete Problems

25 Approximation Algorithms
Seventh Homework Assignment

85

23 Easy and Hard Problems ableif T(n) = O(nK) for some constark independent of
n. The rstimportant complexity class of problems is

The theory ofNP-completeness is an attempt to draw a
line between tractable and intractable problems. The most o
important question is whether there is indeed a difference that are polynomial-time solvable
between the two, and this question is still unanswered.
Typical results are therefore relative statements sucifas “
problemB has a polynomial-time algorithm then so does
problemC” and its equivalent contra-positive “if prob-
lem C has no polynomial-time algorithm then neither has
problemB”. The second formulation suggests we remem-
ber hard problem€ and for a new problerB we rst see
whether we can prove the implication. If we can then we
may not want to even try to solve probleBnef ciently. A
good deal of formalism is necessary for a proper descrip-
tion of results of this kind, of which we will introduce only

a modest amount.

P = setof concrete decision problems

The problems) 2 P are calledractableor easyand the
problemsQ 62P are calledintractable or hard. Algo-
rithms that take only polynomial time are callefficient
and algorithms that require more than polynomial time
are inefficient In other words, until now in this course
we only talked about ef cient algorithms and about easy
problems. This terminology is adapted because the rather
ne grained classi cation of algorithms by complexity we
practiced until now is not very useful in gaining insights
into the rather coarse distinction between polynomial and
non-polynomial.

It is convenient to recast the scenario in a formal lan-

guage framework. Aanguageis a set. f 0;1g~'We
What is a problem? An abstract decision probleis a can think of it as the set of problem instances, that
function| ! f 0; 1g, wherel is the set of prObIem in- have an af rmative answe@(x) = 1. An a|gorithm
stances an® and1 are interpreted to meapAaLSE and A : f0;1g™ f 0;1gacceptsx 2 f 0;1g"f A(x) = 1
TRUE, as usual. To completely formalize the notion, we and itrejectsx if A(x) = 0. The languagacceptedy A
encode the problem instances in strings of zeros and onesis the set of strings 2 f 0; 1g-With A(x) = 1. There is
| 1f 0;1g"'A concrete decision probleia then a func- g subtle difference between accepting aedidinga lan-
tionQ : f0;1g™! f 0;1g. Following the usual conven- guagel . The latter means that accepts every 2 L and
tion, we map bit-strings that do not correspond to mean- rejects every 62L. For example, there is an algorithm

ingful problem instances to 0. that accepts every program that halts, but there is no algo-
As an example consider the shortest-path problem. A rithm that decides the language of such programs. Within
problem instance is a graph and a pair of verticeand the formal language framework we rede ne the class of

v, in the graph. A solution is a shortest path frenand ~ Polynomial-time solvable problems as
v, or the length of such a path. The decision problem ver-) .
sion speci es an integet and asks whether or not there P = fL f 01g']L is accepted by
exists a path fronu to v whose length is at mogt. The a polynomial-time algorithim
theory of NP-completeness really only deals with deci- = fL f 0;1g%j'L is decided by
sion problems. Although this is a loss of generality, the
loss is not dramatic. For example, given an algorithm for
the decision version of the shortest-path problem, we canindeed, a language that can be accepted in polynomial
determine the length of the shortest path by repeated de-time can also be decided in polynomial time: we keep
cisions for different values dk. Decision problems are track of the time and if too much goes by withoube-
always easier (or at least not harder) than the correspond-ing accepted, we turn around and rejectThis is a non-
ing optimization problems. So in order to prove that an constructive argument since we may not know the con-
optimization problem is hard it suf ces to prove that the stants in the polynomial. However, we know such con-
corresponding decision problem is hard. stants exist which suf ces to show that a simulation as
sketched exists.

a polynomial-time algorithigr

Polynomial time. An algorithmsolvesa concrete deci-

sion problemQ in time T(n) if for every instancex 2 Hamiltonian cycles. We use a speci ¢ graph problem to
f0; 1g-6f lengthn the algorithm produce®(x) in time introduce the notion of verifying a solution to a problem,
at mostT (n). Note that this is the worst-case notion of as opposed to solving it. L& = (V;E) be an undi-
time-complexity. The probler® is polynomial-time solv- rected graph. Ahamiltonian cyclecontains every vertex

86

v 2 V exactly once. The grap8 is hamiltonianif it has The nameNP is an abbreviation fonon-deterministic

a hamiltonian cycle. Figure 108 shows a hamiltonian cy- polynomial time, because a non-deterministic computer

cle of the edge graph of a Platonic solid. How about the can guess a certi cate and then verify that certi cate. In a

edge graphs of the other four Platonic solids? Delne parallel emulation, the computer would generate all possi-
ble certi cates and then verify them in parallel. Generat-
ing one certi cate is easy, because it only has polynomial
length, but generating all of them is hard, because there
are exponentially many strings of polynomial length.

@ NP = co-NP

Figure 108: The edge graph of the dodecahedron and one of its
hamiltonian cycles.

fG j G is hamiltoniag. We can thus ask whether or not
L 2 P, thatis, whether or not there is a polynomial-time
algorithm that decides whether or not a graph is hamilto-

nian. The answer to this question is currently not known, non_deterministic machine are at least as powerful as
but there is evidence that the answer might be negative. Onyeaterministic machines. It follows that every problem in
the other hand, suppogés a hamiltonian cycle 0. The PisalsoinNP.P NP. De ne

languagd. "= f(G;y) j y is a hamiltonian cycle o&g is
certainly in P because we just need to make sure that
andG have the same number of vertices and every edge of
y is also an edge d&.

Figure 109: Four possible relations between the complexity
classes, NP, andco-NP.

co-NP = fLjL=1fx62g2NPg;

which is the class of languages whose complement can
be veri ed in non-deterministic polynomial time. It is
o o) not known whether or noP = co-NP. For example,
Non-deterministic polynomial time. More generally, it it seems easy to verify that a graph is hamiltonian but

seems easier to verify a given solution than to come Up it seems hard to verify that a graph is not hamiltonian.
with one. In a nutshell, this is whatP-completeness is \we said earlier that it. 2 P thenL 2 P. Therefore

about, namely nding out whether this is indeed the case p -o.NP. Hence only the four relationships between
and whether the difference between accepting and verify- ie three complexity classes shown in Figure 109 are pos-
ing can be used to separate hard from easy problems. gjpje put at this time we do not know which one is correct.

Cally 2 f 0; 1g™4 certificate An algorithmA verifies
a problem instance 2 f 0; 1g"if there exists a certi cate
y with A(x;y) = 1. The languageerifiedby A is the set
of stringsx 2 f 0; 1g™Veri ed by A. We now de ne a new
class of problems,

Problem reduction. We now develop the concept of re-
ducing one problem to another, which is key in the con-
struction of the class dfiP-complete problems. The idea

is to map or transform an instance of a rst problem to an
instance of a second problem and to map the solution to
the second problem back to a solution to the rst problem.
For decision problems, the solutions are the same and need
no transformation.

NP = fL f 0;1g5L is veried by

a polynomial-time algorithm

More formally,L is in NP if for every problem instance

x 2 L there is a certi catey whose length is bounded
from above by a polynomial in the length ®fsuch that
A(x;y) = 1 andA runs in polynomial time. For exam-
ple, deciding whether or nds is hamiltonian is inNP.

87

Languagd. ; is polynomial-time reducibléo language
Lo, denoted.; p Ly, ifthereisa polynomial-time com-
putable functiorf : f0;1g™¥f 0;1g™8uch tha 2 L,
iff f(x) 2 Lo, forall x 2 f0;1g%" Now suppose that

L, is polynomial-time reducible th , and thatlL , has a
polynomial-time algorithnA, that decides »,

x 1 f(x) " 0 1g:

We can compose the two algorithms and obtain a poly-
nomial-time algorithmA; = A, f that decided ;. In
other words, we gained an ef cient algorithm fbg just

by reducing it tol».
REDUCTIONLEMMA. If Ly p Lo andL, 2 P then
L;2P.

In words, if L1 is polynomial-time reducible td., and
L, is easy ther; is also easy. Conversely, if we know
thatL ; is hard then we can conclude tHaf is also hard.
This motivates the following de nition. A languade

f 0; 195 NP-completeaf

(1) L 2 NP;
(2) LY p L, foreveryL™2 NP.

Sinceevery. "2 NP is polynomial-time reducible tt,

all L have to be easy fdr to have a chance to be easy.
The L Pthus only provide evidence that might indeed

be hard. We say is NP-hard if it satis es (2) but not
necessarily (1). The problems that satisfy (1) and (2) form
the complexity class

NPC = fL jL isNP-completg:

All these de nitions would not mean much if we could
not nd any problems inNPC. The rst step is the most
dif cult one. Once we have one problem MPC we can

get others using reductions.

Satisfying boolean formulas. Perhaps surprisingly, a
rst NP-complete problem has been found, namely the
problem of satis ability for logical expressions. A
boolean formula' , consists of variables; x2;:::, op-
erators; ;”;_ ;=) ;::: and parentheses.tfuth assign-
mentmaps each variable to a boolean valo@r 1. The
truth assignmergatisfiesf the formula evaluatesto 1. The
formula is satisfiableif there exists a satisfying truth as-
signment. De ne SAT= f' | ' issatisableg. As an
example consider the formula

(X1=) X2)0

= X, =1 weget(x; =) x2) =1, (X2 _
2 SAT.

(X2 _: xq):

If we setxq
: X1) =1 and therefore = 1. It follows that

88

In fact, all truth assignments evaluatepwhich means
that is really a tautology. More generally, a boolean
formula,’ , is satisfyable iff. ' is not a tautology.

SATISFIABILITY THEOREM. We have SAT2 NP and
L™ p SAT for everyL ™2 NP.

That SAT is in the clasBIP is easy to prove: just guess an
assignment and verify that it satis es. However, to prove
that everylL. 72 NP can be reduced to SAT in polynomial
time is quite technical and we omit the proof. The main
idea is to use the polynomial-time algorithm that veri es
L Mand to construct a boolean formula from this algorithm.
To formalize this idea, we would need a formal model of a
computer, a Touring machine, which is beyond the scope
of this course.

24 NP-Complete Problems

In this section, we discuss a numbeiNF?-complete prob-
lems, with the goal to develop a feeling for what hard
problems look like. Recognizing hard problems is an im-
portant aspect of a reliable judgement for the dif culty of
a problem and the most promising approach to a solution.
Of course, forNP-complete problems, it seems futile to
work toward polynomial-time algorithms and instead we
would focus on nding approximations or circumventing

Xl X2 X2 - Xl

Figure 110: The tree representation of the formulalnciden-
tally, ' is a tautology, which means it is satis ed by every truth
assignment. Equivalentlyy' is not satis able.

the problems altogether. We begin with a result on differ- V2 X1 X2 vz, (x1) X2) prohibited

ent ways to write boolean formulas. 0 0 © 0 Ty2N XN X2
0 0 1 0 Ty2 Ml XM Xe
0 1 o0 1

Reduction to 3-satisfiability. We call a boolean vari- ‘1’ é é 2 Sy2"t Xt Xz

able or its negation diteral. The conjunctive normal 1 o0 1 1

formis a sequence of clauses connected'Byand each 1 1 0 0 Yo A X1 A Xo

clauseis a sequence of literals connected by. A for- 1 1 1 1

mula is in3-CNFif it is in conjunctive normal form and
each clause consists of three literals. It turns out that de-
ciding the satis ability of a boolean formula in 3-CNF
is no easier than for a general boolean formula. De ne

Table 6: Conversion of a clause into a disjunction of conioms
of at most three literals each.

3-SAT = f' 2 SAT | ' isin3-CNFg. We prove the follows thaty, () (x1 =) X») is equivalent to the

above claim by reducing SAT to 3-SAT. negation of that disjunction, which by de Morgan's
law is (Y2 _ X1 _X2)" (Y2 _X1_: X2) N (Y2_1 X1_

SATISFIABILITY LEMMA. SAT p 3-SAT. TX) N (Y2t X1 X2).

PrROOF We take a boolean formulaand transform it into Step 3. The clauses with fewer than three literals can

3-CNF in three steps. be expanded by adding new variables. For example
a_bisexpandedtéa_b_p)” (a_b_: p)and

Step 1. Thinkof' asan expression and represent it as (a) isexpandedtéa_p_q)*(a_p_: q " (a_

a binary tree. Each node is an operation that gets the p_gQ”(a_:p_: 0.

input from its two children and forwards the output

to its parent. Introduce a new variable for the output Each step takes 0n|y po]ynomia| time. At the end, we get

and de ne a new formula “for each node, relating an equivalent formula in 3-conjunctive normal formgl
the two input edges with the one output edge. Figure

110 shows the tree representation of the formuka
(X1=) X2) 0 (X2_: X1). The new formula is

We note that clauses of length three are necessary to
make the satis ability problem hard. Indeed, there is a
polynomial-time algorithm that decides the satis ability

"Hs (v20 (x13) x2)) of a formula in 2-CNF.
Mys 0 (X2_t X1))
Ay 0 (Y20 ys) M vae NP-completeness proofs. Using polynomial-time re-

ductions, we can show fairly mechanically that problems
areNP-complete, if they are. A key property is the tran-
sitivity of p, thatis, if L® p Ly andL; p L2
Step 2. Convert each clause into disjunctive normal thenL™ p L, as can be seen by composing the two
form. The most mechanical way uses the truth table polynomial-time computable functions to get a third one.
for each clause, as illustrated in Table 6. Each clause
has at most three literals. For example, the negation REDUCTION LEMMA. LetL;L, f 0;1g~and assume
ofy, () (X1 =) Xp) is equivalent to the disjunc- L1 p Lo If Lyis NP-hard andL, 2 NP then
tion of the conjunctions in the rightmost column. It L, 2 NPC.

It should be clear that there is a satisfying assignment
for' iff there is one for =

89

A genericNP-completeness proof thus follows the steps
outline below.

Step 1. Provethat; 2 NP.

Step 2. SelectaknowiNP-hard probleml.;, and nd
a polynomial-time computable functioh, with x 2
L, iff f (X) 2 Lo.

This is what we did folL, = 3-SAT andL; = SAT.
Therefore 3-SAT2 NPC. Currently, there are thousands
of problems known to b&lP-complete. This is often con-

NP

®

Figure 111: Possible relation betweBnNPC, andNP.

sidered evidence th& 6 NP, which can be the case only
if P\ NPC = ;, as drawn in Figure 111.

Cliques and independent sets. There are manyNP-
complete problems on graphs. A typical such problem
asks for the largest complete subgraph. De neligue
inan undirgst@ grap® = (V; E) as a subgrapf\W; F)
with F = %5 . GivenG and an integek, the QLIQUE
problem asks whether or not there is a cliqué&afr more
vertices.

CLAIM . CLIQUE 2 NPC.

PrROOFE Givenk vertices inG, we can verify in poly-
nomial time whether or not they form a complete graph.
Thus Q.IQUE 2 NP. To prove property (2), we show
that 3-SAT p CLIQUE. Let' be a boolean formula in
3-CNF consisting ok clauses. We construct a graph as
follows:

(i) each clause is replaced by three vertices;

(ii) two vertices are connected by an edge if they do not Proving that they are indeetlP-complete. LetG =

belong to the same clause and they are not negations(V: E) b€ an undirected graph withvertices and a pos-

of each other.

In a satisfying truth assignment, there is at least one true An "-coloring of G is a function

literal in each clause. The true literals form a clique. Con-
versely, a clique ok or more vertices covers all clauses
and thus implies a satisfying truth assignment.

90

Itis easy to decide in tim®(k?nk*2) whether or not a
graph ofn vertices has a clique of size If k is a constant,
the running time of this algorithm is polynomial m For
the QLIQUE problem to beNP-complete it is therefore es-
sential thatk be a variable that can be arbitrarily large.
We use theNP-completeness of nding large cliques to
prove theNP-completeness of large sets of pairwise non-
adjacent vertices. L&b = (V; E) be an undirected graph.
A subsetW V isindependenif none[sj the vertices in
W are adjacent or, equivalently, #\ % = ;. Given
G and an integek, the INDEPENDENTSET problem asks
whether or not there is an independent sek afr more
vertices.
CLAIM. INDEPENDENTSET 2 NPC.

PROOE It is easy to verify that there is an independent set
of sizek: just guess a subset kfvertices and verify that
no two are adjacent.

Figure 112: The four shaded vertices form an independerin set
the graph on the left and a clique in the complement graphen th
right.

We complete the proof by reducing the. IQUE to the
INDEPENDENTSET problem. As illustrated in Figure 112,
W Vis independen%de nes a clique in the com-
plementgraphG = (V; ;, E). Toprove QIQUE p
INDEPENDENTSET, we transform an instand; k of the
CLIQUE problem to the instanc€ = H;k of the INDE-
PENDENTSET problem.G has an independent set of size
k or larger iffH has a clique of sizk or larger.

Various NP-complete graph problems. We now de-
scribe a fewNP-complete problems for graphs without

itive integer, as before. The following problems de ned
for G andk areNP-complete.

VL[] with
(u) 8 (v) whenevewu andv are adjacent. The KRo-

MATIC NUMBER problem asks whether or n@ has an -
coloring with® k. The problem remainslP-complete

for xed k 3. Fork = 2, the GHROMATIC NUMBER
problem asks whether or nGtis bipartite, for which there
is a polynomial-time algorithm.

The bandwidthof G is the minimum™ such that there
is a bijection :V ! [n]withj (u) (v)j ~ for
all adjacent vertices andv. The BANDWIDTH problem
asks whether or not the bandwidth @fis k or less. The
problem arises in linear algebra, where we permute rows
and columns of a matrix to move all non-zero elements of

complete if no set ilC contains more than three elements,
and there is a polynomial-time algorithm if every set con-
tains two elements. In the latter case, the set system is a
graph and a maximum packing is a maximum matching.

The COVERING problem asks whether or n@ hask
or fewer subsets whose union\i's The problem remains
NP-complete if no set irC contains more than three ele-
ments, and there is a polynomial-time algorithm if every
sets contains two elements. In the latter case, the set sys-

a square matrix as close to the diagonal as possible. Fortem is a graph and the minimum cover can be constructed

example, if the graph is a simple path then the bandwidth
is 1, as can be seen in Figure 113. We can transform the

» o
Rk O Kk
P ok
P o Bk
P o R
P o Bk

B O R
(ST

Figure 113: Simple path and adjacency matrix with rows and
columns ordered along the path.

adjacency matrix o6 such that all non-zero diagonals are
at most the bandwidth & away from the main diagonal.

ume now that the grapt is complete, E
> » and that each edgejv, has a positive integer
weight, w(uv). The TRAVELING SALESMAN problem

the vertices such that the sum of edges connecting con-
tiguous vertices (and the last vertex to the rst)kisor
less,
L) I
W(UiUi+1)
i=0
where indices are taken moduto The problem remains
NP-completeifw : E ! f 1;2g (reduction to FAMILTO -
NIAN CvcLE problem), and also if the vertices are points
in the plane and the weight of an edge is the Euclidean
distance between the two endpoints.

k;

Set systems. Simple graphs are set systems in which the
sets contain only two elements. We now list a fis\R-
complete problems for more general set systems. Letting
V be a nite set,C 2V a set system, ankl a positive
integer, the following problems aféP-complete.

The RACKING problem asks whether or n@t hask or
more mutually disjoint sets. The problem remaNB-

91

in polynomial time from a maximum matching.

Suppose every elemert2 V has a positive integer
weight, w(v). The RRTITION problem asks whether
thereis a subséd V with

1
w(u)
u [Tl

1
w(v):
v V33U

The problem remaindlP-complete if we require that
andV U have the same number of elements.

25 Approximation Algorithms

Many important problems adP-hard and just ignoring

a matching that is, a subset of the edges so that no two
share a vertex. The size of the minimum vertex cover is
at least the size of the largest possible matching. The al-

them is not an option. There are indeed many things one gorithm nds a matching and since it picks two vertices

can do. For problems of small size, even exponential-

per edge, we are guaranteed at most twice as many ver-

time algorithms can be effective and special subclassestices as needed. This pattern of boundmgby the size

of hard problems sometimes have polynomial-time algo-
rithms. We consider a third coping strategy appropriate
for optimization problems, which is computing almost op-
timal solutions in polynomial time. In case the aim is
to maximize a positive cost, #n)-approximation algo-
rithm is one that guarantees to nd a solution with cost
C C™=%n), whereC s the maximum cost. For mini-
mization problems, we would requi@ C%n). Note
that%n) 1andif%n) = 1 then the algorithm produces
optimal solutions. Ideally%is a constant but sometime
even this is not achievable in polynomial time.

Vertex cover. The rst problem we consider is nding
the minimum set of vertices in a graggh = (V;E) that
covers all edges. Formally, a subset V is aver-
tex coverif every edge has at least one endpointMr’
Observe thaw Uis a vertex cover iy~ VUis an inde-
pendent set. Finding a minimum vertex cover is therefore
equivalent to nding a maximum independent set. Since
the latter problem idNP-complete, we conclude that nd-
ing a minimum vertex cover is alddP-complete. Here is

a straightforward algorithm that achieves approximation
ratio%n) =2, foralln = jVj.

V= EF=E;
while E6 ; do

select an arbitrary edgev in E

addu andv to V'Y

remove all edges incident toor v from E ™
endwhile

Clearly, V is a vertex cover. Using adjacency lists with
links between the two copies of an edge, the running time
is O(h + m), wherem is the number of edges. Further-
more, we havéo= 2 because every cover must pick at
least one vertex of each edge selected by the algorithm,
henceC 2C " Observe that this result does not imply
a constant approximation ratio for the maximum indepen-
dent set problem. We hay¢ VF=n C n 2CcH!
which we have to compare with C5the size of the
maximum independent set. FGr—= 3, the approxima-
tion ratio is unbounded.

Let us contemplate the argument we used to retate
andC %' The set of edgesv selected by the algorithm is

92

of another quantity (in this case the size of the largest
matching) is common in the analysis of approximation al-
gorithms. Incidentally, for bipartite graphs, the size loé t
largest matching is equal to the size of the smallest vertex
cover. Furthermore, there is a polynomial-time algorithm
for computing them.

Traveling salesman. Second, we consider the traveling
salesman problem, which is formulated for a complete
graphG = (V;E) with a positive integer cost function
c: E ! Z, A tourin this graph is a Hamiltonian
cycle and the problem isl—ﬂpg the toud, with mini-
mum total costc(A) = wiac(uv). Letus rst as-
sume that the cost function satis es the triangle inequal-
ity, c(uw) c(uv) + c(vw) for all u;v;w 2 V. It can

be shown that the problem of nding the shortest tour
remainsNP-complete even if we restrict it to weighted
graphs that satisfy this inequality. We formulate an al-
gorithm based on the observation that the cost of every
tour is at least the cost of the minimum spanning tree,
C™ (T).

1 Construct the minimum spanning tréeof G.
2 Return the preorder sequence of vertice§ in

Using Prim's algorithm for the minimum spanning tree,
the running time is Qf?). Figure 114 illustrates the algo-
rithm. The preorder sequence is only de ned if we have

Figure 114: The solid minimum spanning tree, the dottecstrav
sal using each edge of the tree twice, and the solid tour redxdai
by taking short-cuts.

a root and the neighbors of each vertex are ordered, but

we may choose both arbitrarily. The cost of the returned ing greedy approach that selects, at each step, the set con-
tour is at most twice the cost of the minimum spanning taining the maximum number of yet uncovered elements.
tree. To see this, consider traversing each edge of the min-

imum spanning tree twice, once in each direction. When-

ever a vertex is visited more than once, we take the direct
edge connecting the two neighbors of the second copy as a

short-cut. By the triangle inequality, this substituticanc
only decrease the overall cost of the traversal. It follows
thatC 2¢(T) 2c™!

The triangle inequality is essential in nding a constant
approximation. Indeed, without it we can construct in-
stances of the problem for which nding a constant ap-
proximation isNP-hard. To see this, transform an un-
weighted graplGP= (VYE"Y to the complete weighted
graphG = (V; E) with

1]
1 if uv2 EU
%1 otherwise.

c(uv)

Any %approximation algorithm must return the Hamilto-
nian cycle ofGY if there is one.

Set cover. Third, we consider the problem of covering
a setX with sets chosen from a set systém We-asy
sume the set is the union of sets in the systénx F.
More precisely, we ﬁooking for a smallest subsystem
FU F with X = FU Thecostof this subsystem is
the number of sets it containg; J. See Figure 115 for
an illustration of the problem. The vertex cover problem

S
[O O O O}
[O O ®) O}

@) @) @) O
- @@

Figure 115: The seX of twelve dots can be covered with four
of the ve sets in the system.

is a special caseX E andF contains all subsets of

edges incident to a common vertex. It is special because

each element (edge) belongs to exactly two sets. Since w

no longer have a bound on the number of sets containing

a single element, it is not surprising that the algorithm for

e

Fb=; XB= X,
while X6 ; do
selectS 2 F maximizingjS\ X,
FC= FOf Sg X=X S
endwhile

Using a sparse matrix representation of the set system
(similar to an adjacency list representation of a graph), we
can run the algorithm in time prlep_eqional to the total size
of the sets in the systerm, = ¢ jSj. We omit the
details.

Analysis. More interesting than the running time is the
analysis of the approximation ratio the greedy algorithm
achieves. Itis convenient e short notation fordhe
th harmonic numbetlg = _; + ford 0. Recall that
Hgy 1+Indford 1. Letthe size of the largest setin
the system ben = maxfj Sjj S 2 Fg.

CLAIM . The greedy method is & y,-approximation al-
gorithm for the set cover problem.

PROOF For each se$ selected by the algorithm, we dis-
tribute $1 over thgS\ X § elements covered for the rst
time. Letcy % cost allocated this way x02 X . We
havelF = xCx. If X is covered the rsttime by the
i-th selected sef;, then

1 .
iSi (Sl [Si—ai’

. 1 1 ,
We havejF SIE xrsfx because the optimal

cover,F “ontain h elemenrtat least once. We will
prove shortly that | <fx Hg| foreverysetS 2 F.
It follows that

F 1

Cx

HISI HmjF ?

S[EH!

as claimed.

Form = 3, we get%= Hsz = . This implies that
for graphs with vertex-degrees at most 3, the greedy algo-
rithm guarantees a vertex cover of size at mistimes
the optimum, which is better than the ratio 2 guaranteed
by our rst algorithm.

We still need to prove that the sum of cosfsover the

vertex covers does not extend to a constant-approximationelements of a se® in the system is bounded from above

algorithm for set covers. Instead, we consider the follow-

93

by H|s|. Letu; be the number of elements # that are

not covered by the rsi selected sets); = jS (S1[

;. [Si)j, and observe that the numbers do not increase.
Let ux—; be the last non-zero number in the sequence, so
jSj=Up :ii Uk—1>UuUg=0.Sinceuj—; ujisthe
number of elements i& covered the rst time bys;, we
have

I 1 | § 1
CX = .
x [S1 i=1 J

Ui—1 Ui .
Si (Sul i Si-a)i

We also haveui—y | Si (Si[:::[Si-1)j, for all

[k, because of the greedy choice &f If this were
not the case, the algorithm would have choSeimstead

of S; in the construction oF = The problem thus reduces
to bounding the sum of ratios7*==". It is not dif cult

to see that this sum can be at least logarithmic in the size
of S. Indeed, if we choose; about half the size afij—1,
forall i 1, then we have logarithmically many terms,
each roughly%. We use a sequence of simple arithmetic
manipulations to prove that this lower bound is asymptot-
ically tight:

1 Fud o

y b S}

x[s1 = Uil
i=1 j=u +1 Yi-1

We now replace the denominator py uj—; to form a
telescoping series of harmonic numbers and get

I 1 T 41
Cx -
x [S] i=1j:!!- +1J
Uiz i
= I R
i=1 j=1 J _]=1J
| S |
= (Huifl Hui):

i=1

This is equal taH,, Hy, = Hs}, which lIs the gap
left in the analysis of the greedy algorithm.

94

Seventh Homework Assignment

The purpose of this assignment is to help you prepare for

the nal exam. Solutions will neither be graded nor even
collected.

Problem 1. (20 = 5 + 15 points). Consider the class
of satis able boolean formulas in conjunctive nor-
mal form in which each clause contains two literals,
2-SAT= f' 2 SAT| "' is 2-CNHRy.

(a) I1s 2-SAT2 NP?

(b) Is there a polynomial-time algorithm for decid-
ing whether or not a boolean formula in 2-CNF
is satis able? If your answer is yes, then de-
scribe and analyze your algorithm. If your an-
swer is no, then show that 2-SAT NPC.

Problem 2. (20points). LetA be a nite setand a func-
tion that maps everg 2 A to a positive integef (a).
The RRTITION problem asks whether or not there is
asubseB A such that

1
f(b) =
b [B1

1
f(a):
alA+B

We have learned that theARTITION problem is
NP-complete. Given positive integejsandk, the
SUM OF SQUARES problem asks whether or not
A can be partitioned intg disjoint subsetsA =
Bi[LB>[::: [Bj,suchthat
A 1
— m 1
f(a) k:

i=1 alBi

Prove that the 8M OF SQUARES problem isNP-
complete.

Problem 3. (20 = 10+10 points). LetG be an undirected
graph. A path inG is simpleif it contains each ver-
tex at most once. Specifying two verticesv and a
positive integek, the LONGESTPATH problem asks
whether or not there is a simple path connecting
andv whose length i« or longer.

(a) Give a polynomial-time algorithm for the
LONGESTPATH problem or show that it iBlP-
hard.

(b) Reuvisit (a) under the assumption thatis di-
rected and acyclic.

95

Problem 4. (20 = 10 + 10 points). LetA 2V be an
abstract simplicial complex over the nite setand
letk be a positive integer.

(a) IsitNP-hard to decide whethex hask or more
disjoint simplices?

(b) Is it NP-hard to decide whetheA hask or
fewer simplices whose union 8?

Problem 5. (20 points). LetG = (V;E) be an undi-
rected, bipartite graph and recall that there is a
polynomial-time algorithm for constructing a max-
imum matching. We are interested in computing a
minimum set of matchings such that every edge of
the graph is a member of at least one of the selected
matchings. Give a polynomial-time algorithm con-
structing anO(log n) approximation for this prob-
lem.

