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Part 1: Introduction. 

Technical people who want to get up to speed on machine learning quickly

Non-technical people who want a primer on machine learning and are willing 
to engage with technical concepts

Anyone who is curious about how machines think

This guide is intended to be accessible to anyone. Basic concepts in probability, 
statistics, programming, linear algebra, and calculus will be discussed, but it isn’t 
necessary to have prior knowledge of them to gain value from this series.

If you're more interested in figuring out which courses to take, textbooks to read, 
projects to attempt, etc. Take a look at our top picks in the Appendix: The Best 
Machine Learning Resources.

Why machine learning matters

Artificial intelligence will shape our future more powerfully than any other innovation 
this century. Anyone who does not understand it will soon find themselves feeling left 
behind, waking up in a world full of technology that feels more and more like magic.

The rate of acceleration is already astounding. After a couple of AI winters and periods 
of false hope over the past four decades, rapid advances in data storage and computer 
processing power have dramatically changed the game in recent years.

Part 1: Introduction

Who should read this?
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In 2015, Google trained a conversational agent (AI) that could not only convincingly 
interact with humans as a tech support helpdesk, but also discuss morality, express 
opinions, and answer general facts-based questions.

(Vinyals & Le, 2017)

Part 1: Introduction
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The same year, DeepMind developed an agent that surpassed human-level 
performance at 49 Atari games, receiving only the pixels and game score as inputs. 
Soon after, in 2016, DeepMind obsoleted their own this achievement by releasing a 
new state-of-the-art gameplay method called A3C.

Meanwhile, AlphaGo defeated one of the best human players at Go — an extraordinary 
achievement in a game dominated by humans for two decades after machines first 
conquered chess. Many masters could not fathom how it would be possible for a 
machine to grasp the full nuance and complexity of this ancient Chinese war strategy 
game, with its 10170 possible board positions (there are only 1080 atoms in the universe).

Professional Go player Lee Sedol reviewing his match with AlphaGo after defeat. 
Photo via The Atlantic.

Part 1: Introduction
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Just a few days ago (as of this writing), on August 11, 2017, OpenAI reached yet 
another incredible milestone by defeating the world’s top professionals in 1v1 matches 
of the online multiplayer game Dota 2.

See the full match at The International 2017, with Dendi (human) vs. OpenAI (bot), on YouTube.

Part 1: Introduction

In March 2017, OpenAI created agents that invented their own language to cooperate 
and more effectively achieve their goal. Soon after, Facebook reportedly successfully 
training agents to negotiate and even lie.
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Part 1: Introduction

Google Translate overlaying English translations on a drink menu in real time using convolutional neural networks.

Much of our day-to-day technology is powered by artificial intelligence. Point your 
camera at the menu during your next trip to Taiwan and the restaurant’s selections will 
magically appear in English via the Google Translate app.
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A bold proclamation by London-based BenevolentAI (screenshot from About Us page, August 2017).

Law enforcement uses visual recognition and natural language processing to process 
footage from body cameras. The Mars rover Curiosity even utilizes AI to autonomously 
select inspection-worthy soil and rock samples with high accuracy.

In everyday life, it’s increasingly commonplace to discover machines in roles 
traditionally occupied by humans. Really, don’t be surprised if a little housekeeping 
delivery bot shows up instead of a human next time you call the hotel desk to send up 
some toothpaste.

In this series, we’ll explore the core machine learning concepts behind these 
technologies. By the end, you should be able to describe how they work at a conceptual 
level and be equipped with the tools to start building similar applications yourself.

Today AI is used to design evidence-based treatment plans for cancer patients, 
instantly analyze results from medical tests to escalate to the appropriate specialist 
immediately, and conduct scientific research for drug discovery.

One bit of advice: it is important to view knowledge as sort of 
a semantic tree — make sure you understand the fundamental 
principles, ie the trunk and big branches, before you get into the 
leaves/details or there is nothing for them to hang on to. — Elon Musk, 
Reddit AMA

The semantic tree: artificial intelligence and machine learning

Part 1: Introduction
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Machine learning is one of many subfields of artificial intelligence, concerning the ways that computers learn from 
experience to improve their ability to think, plan, decide, and act.

Artificial intelligence is the study of agents that perceive the world around them, form 
plans, and make decisions to achieve their goals. Its foundations include mathematics, 
logic, philosophy, probability, linguistics, neuroscience, and decision theory. Many 
fields fall under the umbrella of AI, such as computer vision, robotics, machine learning, 
and natural language processing.

Machine learning is a subfield of artificial intelligence. Its goal is to enable computers 
to learn on their own. A machine’s learning algorithm enables it to identify patterns in 
observed data, build models that explain the world, and predict things without having 
explicit pre-programmed rules and models.

Part 1: Introduction
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Strong AI will change our world forever; to understand how, studying 
machine learning is a good place to start

The technologies discussed above are examples of artificial narrow intelligence (ANI), 
which can effectively perform a narrowly defined task.

The AI effect: what actually qualifies as “artificial intelligence”?

The exact standard for technology that qualifies as “AI” is a bit fuzzy, and interpretations 

change over time. The AI label tends to describe machines doing tasks traditionally in the 

domain of humans. Interestingly, once computers figure out how to do one of these tasks, 

humans have a tendency to say it wasn’t really intelligence. This is known as the AI effect.

For example, when IBM’s Deep Blue defeated world chess champion Garry Kasparov in 1997, 

people complained that it was using "brute force" methods and it wasn’t “real” intelligence 

at all. As Pamela McCorduck wrote, “It’s part of the history of the field of artificial intelligence 

that every time somebody figured out how to make a computer do something — play good 

checkers, solve simple but relatively informal problems — there was chorus of critics to say, 

‘that’s not thinking’”(McCorduck, 2004).

 

Perhaps there is a certain je ne sais quoi inherent to what people will reliably accept as 

“artificial intelligence”:

So does a calculator count as AI? Maybe by some interpretation. What about a self-driving 

car? Today, yes. In the future, perhaps not. Your cool new chatbot startup that automates a 

flow chart? Sure… why not.

"AI is whatever hasn't been done yet." - Douglas Hofstadter

Part 1: Introduction
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Meanwhile, we’re continuing to make foundational advances towards human-level 
artificial general intelligence (AGI), also known as strong AI. The definition of an AGI 
is an artificial intelligence that can successfully perform any intellectual task that a 
human being can, including learning, planning and decision-making under uncertainty, 
communicating in natural language, making jokes, manipulating people, trading 
stocks, or… reprogramming itself.

And this last one is a big deal. If we create an AI that can improve itself, it would unlock 
a cycle of recursive self-improvement that could lead to an intelligence explosion over 
some unknown time period, ranging from many decades to a single day.

Let an ultraintelligent machine be defined as a machine 

that can far surpass all the intellectual activities of any 

man however clever. Since the design of machines is one 

of these intellectual activities, an ultraintelligent machine 

could design even better machines; there would then 

unquestionably be an ‘intelligence explosion,’ and the 

intelligence of man would be left far behind. Thus the first 

ultraintelligent machine is the last invention that man need 

ever make, provided that the machine is docile enough to 

tell us how to keep it under control. — I.J. Good, 1965

You may have heard this point referred to as the singularity. The term is borrowed 
from the gravitational singularity that occurs at the center of a black hole, an infinitely 
dense one-dimensional point where the laws of physics as we understand them start 
to break down.

Part 1: Introduction
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A recent report by the Future of Humanity Institute surveyed a panel of AI researchers 
on timelines for AGI, and found that “researchers believe there is a 50% chance of AI 
outperforming humans in all tasks in 45 years” (Grace et al, 2017). We’ve personally 
spoken with a number of sane and reasonable AI practitioners who predict much 
longer timelines (the upper limit being “never”), and others whose timelines are 
alarmingly short — as little as a few years.

We have zero visibility into what happens beyond the event horizon of a black hole 
because no light can escape. Similarly, after we unlock AI’s ability to recursively 
improve itself, it’s impossible to predict what will happen, just as mice who 
intentionally designed a human might have trouble predicting what the human would 
do to their world. Would it keep helping them get more cheese, as they originally 
intended? (Image via WIRED)

Part 1: Introduction
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The advent of greater-than-human-level artificial superintelligence (ASI) could be one 
of the best or worst things to happen to our species. It carries with it the immense 
challenge of specifying what AIs will want in a way that is friendly to humans.

While it’s impossible to say what the future holds, one thing is certain: 2017 is a good 
time to start understanding how machines think. To go beyond the abstractions of 
armchair philosophy and intelligently shape our roadmaps and policies with respect 
to AI, we must engage with the details of how machines see the world — what they 
“want”, their potential biases and failure modes, their temperamental quirks — just as 
we study psychology and neuroscience to understand how humans learn, decide, act, 
and feel.

Image from Kurzweil’s The Singularity Is Near, published in 2005. Now, in 2017, only a couple of these posters could 
justifiably remain on the wall.

Part 1: Introduction
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Machine learning is at the core of our journey towards artificial general intelligence, 
and in the meantime, it will change every industry and have a massive impact on our 
day-to-day lives. That’s why we believe it’s worth understanding machine learning, at 
least at a conceptual level — and we designed this series to be the best place to start.

How to read this series
You don’t necessarily need to read the series cover-to-cover to get value out of it. Here 
are three suggestions on how to approach it, depending on your interests and how 
much time you have:

There are complex, high-stakes questions about AI that will require  our careful attention in the 

coming years. 

How can we combat AI’s propensity to further entrench systemic biases evident in existing data 

sets? What should we make of fundamental disagreements among the world’s most powerful 

technologists about the potential risks and benefits of artificial intelligence? What are the 

most promising technical approaches to teaching AI systems to behave themselves? What will 

happen to humans' sense of purpose in a world without work?

1. T-shaped approach. Read from beginning to end. Summarize each section 
in your own words as you go (see: Feynman technique); this encourages active 
reading & stronger retention. Go deeper into areas that are most relevant to your 
interests or work. We’ll include resources for further exploration at the end of 
each section.

2. Focused approach. Jump straight to the sections you’re most curious about 
and focus your mental energy there.

3. 80/20 approach. Skim everything in one go, make a few notes on interesting 
high-level concepts, and call it a night.

Part 1: Introduction
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About the authors

“Ok, we have to be done with gradient descent by the time we finish this ale.”

@ The Boozy Cow in Edinburgh

Vishal most recently led growth at Upstart, a lending platform that utilizes machine 
learning to price credit, automate the borrowing process, and acquire users. He spends 
his time thinking about startups, applied cognitive science, moral philosophy, and the 
ethics of artificial intelligence. (Contact: vishal.maini@gmail.com)

Samer is a Master’s student in Computer Science and Engineering at UCSD and co-
founder of Conigo Labs. Prior to grad school, he founded TableScribe, a business 
intelligence tool for SMBs, and spent two years advising Fortune 100 companies 
at McKinsey. Samer previously studied Computer Science and Ethics, Politics, and 
Economics at Yale. (Contact: samrsabri@gmail.com)

Most of this series was written during a 10-day trip to the United Kingdom in a frantic 
blur of trains, planes, cafes, pubs and wherever else we could find a dry place to 
sit. Our aim was to solidify our own understanding of artificial intelligence, machine 
learning, and how the methods therein fit together — and hopefully create something 
worth sharing in the process.

And now, without further ado, let’s dive into machine learning with Part 2.1: Supervised 
Learning!

Part 1: Introduction
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Part 2.1: Supervised Learning

The two tasks of supervised learning: regression and classification. Linear 
regression, loss functions, and gradient descent.

How much money will we make by spending more dollars on digital advertising? Will 
this loan applicant pay back the loan or not? What’s going to happen to the stock 
market tomorrow?

In supervised learning problems, we start with a data set containing training examples 
with associated correct labels. For example, when learning to classify handwritten 
digits, a supervised learning algorithm takes thousands of pictures of handwritten 
digits along with labels containing the correct number each image represents. The 
algorithm will then learn the relationship between the images and their associated 
numbers, and apply that learned relationship to classify completely new images 
(without labels) that the machine hasn’t seen before. This is how you’re able to deposit 
a check by taking a picture with your phone!

To illustrate how supervised learning works, let’s examine the problem of predicting 
annual income based on the number of years of higher education someone has 
completed. Expressed more formally, we’d like to build a model that approximates the 
relationship f  between the number of years of higher education X and corresponding 
annual income Y.

Part 2.1: Supervised Learning
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Regarding epsilon:
(1) ε represents irreducible error in the model, which is a theoretical limit around the 
performance of your algorithm due to inherent noise in the phenomena you are trying to 
explain. For example, imagine building a model to predict the outcome of a coin flip.

(2) Incidentally, mathematician Paul Erdös referred to children as “epsilons” because in 
calculus (but not in stats!) ε denotes an arbitrarily small positive quantity. Fitting, no?
One method for predicting income would be to create a rigid rules-based model 
for how income and education are related. For example: “I’d estimate that for every 
additional year of higher education, annual income increases by $5,000.”

This approach is an example of engineering a solution (vs. learning a solution, as with 
the linear regression method described below).

You could come up with a more complex model by including some rules about degree 
type, years of work experience, school tiers, etc. For example: “If they completed a 
Bachelor’s degree or higher, give the income estimate a 1.5x multiplier.”

But this kind of explicit rules-based programming doesn’t work well with complex 
data. Imagine trying to design an image classification algorithm made of if-then 
statements describing the combinations of pixel brightnesses that should be labeled 
“cat” or “not cat”.

X (input) = years of higher education

Y (output) = annual income

f = function describing the relationship between X and Y

ε (epsilon) = random error term (positive or negative) with mean zero

income = ($5,000 * years_of_education) + baseline_income

Part 2.1: Supervised Learning



18

Machine Learning for Humans

Supervised machine learning solves this problem by getting the computer to do the 
work for you. By identifying patterns in the data, the machine is able to form heuristics. 
The primary difference between this and human learning is that machine learning runs 
on computer hardware and is best understood through the lens of computer science 
and statistics, whereas human pattern-matching happens in a biological brain (while 
accomplishing the same goals).

In supervised learning, the machine attempts to learn the relationship between income 
and education from scratch, by running labeled training data through a learning 
algorithm. This learned function can be used to estimate the income of people whose 
income Y is unknown, as long as we have years of education X as inputs. In other 
words, we can apply our model to the unlabeled test data to estimate Y.

The goal of supervised learning is to predict Y as accurately as possible when given 
new examples where X is known and Y is unknown. In what follows we’ll explore several 
of the most common approaches to doing so.

The rest of this section will focus on regression. In Part 2.2 we’ll dive deeper into 
classification methods.

Regression: predicting a continuous value
Regression predicts a continuous target variable Y. It allows you to estimate a value, 
such as housing prices or human lifespan, based on input data X.

Here, target variable means the unknown variable we care about predicting, and 
continuous means there aren’t gaps (discontinuities) in the value that Y can take on. 

Classification: 
Assign a label. Is this a picture of a 

cat or a dog?

The two tasks of supervised learning: regression and classification

Regression: 
Predict a continuous numerical value. 

How much will that house sell for?

Part 2.1: Supervised Learning
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A person’s weight and height are continuous values. Discrete variables, on the other 
hand, can only take on a finite number of values — for example, the number of kids 
somebody has is a discrete variable.

Predicting income is a classic regression problem. Your input data X includes all 
relevant information about individuals in the data set that can be used to predict 
income, such as years of education, years of work experience, job title, or zip code. 
These attributes are called features, which can be numerical (e.g. years of work 
experience) or categorical (e.g. job title or field of study).

You’ll want as many training observations as possible relating these features to the 
target output Y, so that your model can learn the relationship f between X and Y.

The data is split into a training data set and a test data set. The training set has labels, 
so your model can learn from these labeled examples. The test set does not have 
labels, i.e. you don’t yet know the value you’re trying to predict. It’s important that your 
model can generalize to situations it hasn’t encountered before so that it can perform 
well on the test data.

In our trivially simple 2D example, this could take the form of a .csv file where each row 
contains a person’s education level and income. Add more columns with more features 
and you’ll have a more complex, but possibly more accurate, model.

Regression

Y = f(X) + ε, where X = (x1, x2…xn)

Training: machine learns f from labeled training data

Test: machine predicts Y from unlabeled testing data

Note that X can be a tensor with an any number of dimensions. A 1D tensor is a vector (1 row, 

many columns), a 2D tensor is a matrix (many rows, many columns), and then you can have 

tensors with 3, 4, 5 or more dimensions (e.g. a 3D tensor with rows, columns, and depth). For a 

review of these terms, see the first few pages of this linear algebra review.

Part 2.1: Supervised Learning
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So how do we solve these problems?
How do we build models that make accurate, useful predictions in the real world? We 
do so by using supervised learning algorithms.

Now let’s get to the fun part: getting to know the algorithms. We’ll explore some of 
the ways to approach regression and classification and illustrate key machine learning 
concepts throughout.

Part 2.1: Supervised Learning
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Linear regression (ordinary least squares)
“Draw the line. Yes, this counts as machine learning.”

First, we’ll focus on solving the income prediction problem with linear regression, since 
linear models don’t work well with image recognition tasks (this is the domain of deep 
learning, which we’ll explore later).

We have our data set X, and corresponding target values Y. The goal of ordinary least 
squares (OLS) regression is to learn a linear model that we can use to predict a new y 
given a previously unseen x with as little error as possible. We want to guess how much 
income someone earns based on how many years of education they received.

X_train = [4, 5, 0, 2, …, 6] # years of post-secondary education

Y_train = [80, 91.5, 42, 55, …, 100] # corresponding annual incomes, 

in thousands of dollars

Part 2.1: Supervised Learning
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Linear regression is a parametric method, which means it makes an assumption about 
the form of the function relating X and Y (we’ll cover examples of non-parametric 
methods later). Our model will be a function that predicts ŷ given a specific x:

In this case, we make the explicit assumption that there is a linear relationship between X and Y — that is, for 

each one-unit increase in X, we see a constant increase (or decrease) in Y.

β0 is the y-intercept and β1 is the slope of our line, i.e. how much income increases (or 
decreases) with one additional year of education.

Our goal is to learn the model parameters (in this case, β0 and β1) that minimize error 
in the model’s predictions.

To find the best parameters:

Graphically, in two dimensions, this results in a line of best fit. In three dimensions, we 
would draw a plane, and so on with higher-dimensional hyperplanes.

A note on dimensionality: our example is two-dimensional for 
simplicity, but you’ll typically have more features (x’s) and coefficients 
(betas) in your model, e.g. when adding more relevant variables to 
improve the accuracy of your model predictions. The same principles 
generalize to higher dimensions, though things get much harder to 
visualize beyond three dimensions.

Define a cost function, or loss function, that measures how 
inaccurate our model’s predictions are.

Find the parameters that minimize loss, i.e. make our model 
as accurate as possible.

1

2

Part 2.1: Supervised Learning
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Mathematically, we look at the difference between each real data point (y) and our 
model’s prediction (ŷ). Square these differences to avoid negative numbers and 
penalize larger differences, and then add them up and take the average. This is a 
measure of how well our data fits the line.

For a simple problem like this, we can compute a closed form solution using calculus to 
find the optimal beta parameters that minimize our loss function. But as a cost function 
grows in complexity, finding a closed form solution with calculus is no longer feasible. 
This is the motivation for an iterative approach called gradient descent, which allows us 
to minimize a complex loss function.

n = # of observations. Using 2*n instead of n makes the math work out more cleanly when taking the 
derivative to minimize loss, though some stats people say this is blasphemy. When you start having 
opinions on this kind of stuff, you’ll know you are all the way in the rabbit hole.

Part 2.1: Supervised Learning
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Gradient descent: learn the parameters
“Put on a blindfold, take a step downhill. You’ve found the bottom when you have 
nowhere to go but up.”

Gradient descent will come up over and over again, especially in neural networks. 
Machine learning libraries like scikit-learn and TensorFlow use it in the background 
everywhere, so it’s worth understanding the details.

The goal of gradient descent is to find the minimum of our model’s loss function by 
iteratively getting a better and better approximation of it.

Imagine yourself walking through a valley with a blindfold on. Your goal is to find the 
bottom of the valley. How would you do it?

A reasonable approach would be to touch the ground around you and move in 
whichever direction the ground is sloping down most steeply. Take a step and repeat 
the same process continually until the ground is flat. Then you know you’ve reached 
the bottom of a valley; if you move in any direction from where you are, you’ll end up at 
the same elevation or further uphill.

Going back to mathematics, the ground becomes our loss function, and the elevation 
at the bottom of the valley is the minimum of that function.

Let’s take a look at the loss function we saw in regression:

Part 2.1: Supervised Learning
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We see that this is really a function of two variables: β0 and β1. All the rest of the 
variables are determined, since X, Y, and n are given during training. We want to try to 
minimize this function.

The function is f(β0,β1)=z. To begin gradient descent, you make some guess of the 
parameters β0 and β1 that minimize the function.

Next, you find the partial derivatives of the loss function with respect to each beta 
parameter: [dz/dβ0, dz/dβ1]. A partial derivative indicates how much total loss is 
increased or decreased if you increase β0 or β1 by a very small amount.

Put another way, how much would increasing your estimate of annual income assuming 
zero higher education (β0) increase the loss (i.e. inaccuracy) of your model? You want 

Part 2.1: Supervised Learning
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to go in the opposite direction so that you end up walking downhill and minimizing 
loss.

Similarly, if you increase your estimate of how much each incremental year of education 
affects income (β1), how much does this increase loss (z)? If the partial derivative dz/
dβ1 is a negative number, then increasing β1 is good because it will reduce total loss. If 
it’s a positive number, you want to decrease β1. If it’s zero, don’t change β1 because it 
means you’ve reached an optimum.

Keep doing that until you reach the bottom, i.e. the algorithm converged and loss 
has been minimized. There are lots of tricks and exceptional cases beyond the scope 
of this series, but generally, this is how you find the optimal parameters for your 
parametric model.

Overfitting
Overfitting: “Sherlock, your explanation of what just happened is too specific to the 
situation.” Regularization: “Don’t overcomplicate things, Sherlock. I’ll punch you 
for every extra word.” Hyperparameter (λ): “Here’s the strength with which I will 
punch you for every extra word.”

A common problem in machine learning is overfitting: learning a function that perfectly 
explains the training data that the model learned from, but doesn’t generalize well to 
unseen test data. Overfitting happens when a model overlearns from the training data 
to the point that it starts picking up idiosyncrasies that aren’t representative of patterns 
in the real world. This becomes especially problematic as you make your model 
increasingly complex. Underfitting is a related issue where your model is not complex 
enough to capture the underlying trend in the data.

Part 2.1: Supervised Learning
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Bias-Variance Tradeoff

Bias is the amount of error introduced by approximating real-world phenomena with a 

simplified model.

Variance is how much your model's test error changes based on variation in the training data. It 

reflects the model's sensitivity to the idiosyncrasies of the data set it was trained on.

As a model increases in complexity and it becomes more wiggly (flexible), its bias decreases (it 

does a good job of explaining the training data), but variance increases (it doesn't generalize as 

well). Ultimately, in order to have a good model, you need one with low bias and low variance.

Source: Coursera’s ML course, taught by Andrew Ng

Remember that the only thing we care about is how the model performs on test data. 
You want to predict which emails will be marked as spam before they’re marked, not 
just build a model that is 100% accurate at reclassifying the emails it used to build itself 
in the first place. Hindsight is 20/20 — the real question is whether the lessons learned 
will help in the future.

Part 2.1: Supervised Learning
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The model on the right has zero loss for the training data because it perfectly fits every 
data point. But the lesson doesn’t generalize. It would do a horrible job at explaining a 
new data point that isn’t yet on the line.

Two ways to combat overfitting:

1. Use more training data. The more you have, the harder it is to overfit 
the data by learning too much from any single training example.

2. Use regularization. Add in a penalty in the loss function for building 
a model that assigns too much explanatory power to any one feature or 
allows too many features to be taken into account.

The first piece of the sum above is our normal cost function. The second piece is a 
regularization term that adds a penalty for large beta coefficients that give too much 
explanatory power to any specific feature. With these two elements in place, the 
cost function now balances between two priorities: explaining the training data and 
preventing that explanation from becoming overly specific.

The lambda coefficient of the regularization term in the cost function is a 
hyperparameter: a general setting of your model that can be increased or decreased 
(i.e. tuned) in order to improve performance. A higher lambda value will more harshly 
penalize large beta coefficients that could lead to potential overfitting. To decide 
the best value of lambda, you’d use a method called cross-validation which involves 
holding out a portion of the training data during training, and then seeing how well 
your model explains the held-out portion. We’ll go over this in more depth

Woo! We made it.

Part 2.1: Supervised Learning
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Here’s what we covered in this section:

• How supervised machine learning enables computers to learn from labeled 

training data without being explicitly programmed

• The tasks of supervised learning: regression and classification
• Linear regression, a bread-and-butter parametric algorithm

• Learning parameters with gradient descent
• Overfitting and regularization

Practice materials & further reading

2.1a — Linear regression
For a more thorough treatment of linear regression, read chapters 1–3 of An Introduction 
to Statistical Learning. The book is available for free online and is an excellent resource 
for understanding machine learning concepts with accompanying exercises.

For more practice:
• Play with the Boston Housing dataset. You can either use software with nice 

GUIs like Minitab and Excel or do it the hard (but more rewarding) way with 
Python or R.

• Try your hand at a Kaggle challenge, e.g. housing price prediction, and see 
how others approached the problem after attempting it yourself.

2.1b — Implementing gradient descent
To actually implement gradient descent in Python, check out this tutorial. And 
here is a more mathematically rigorous description of the same concepts.

In practice, you’ll rarely need to implement gradient descent from scratch, but 
understanding how it works behind the scenes will allow you to use it more 
effectively and understand why things break when they do.

In the next section — Part 2.2: Supervised Learning II — we’ll talk about two foundational 
methods of classification: logistic regression and support vector machines.

Part 2.1: Supervised Learning
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Classification with logistic regression and support vector machines (SVMs).

Classification: predicting a label
Is this email spam or not? Is that borrower going to repay their loan? Will those users 
click on the ad or not? Who is that person in your Facebook picture?

Classification predicts a discrete target label Y. Classification is the problem of 
assigning new observations to the class to which they most likely belong, based on a 
classification model built from labeled training data.

The accuracy of your classifications will depend on the effectiveness of the algorithm 
you choose, how you apply it, and how much useful training data you have.

Part 2.2: Supervised Learning II

Part 2.2: Supervised Learning II
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Logistic regression: 0 or 1?

Logistic regression is a method of classification: the model outputs the probability of a 
categorical target variable Y belonging to a certain class.

A good example of classification is determining whether a loan application is fraudulent.

Ultimately, the lender wants to know whether they should give the borrower a loan or not, 

and they have some tolerance for risk that the application is in fact fraudulent. In this case, 

the goal of logistic regression is to calculate the probability (between 0% and 100%) that 

the application is fraud. With these probabilities, we can set some threshold above which 

we’re willing to lend to the borrower, and below which we deny their loan application or 

flag the application for further review.

Though logistic regression is often used for binary classification where there are two 
classes, keep in mind that classification can performed with any number of categories 
(e.g. when assigning handwritten digits a label between 0 and 9, or using facial 
recognition to detect which friends are in a Facebook picture).

Can I just use ordinary least squares?
Nope. If you trained a linear regression model on a bunch of examples where Y = 0 or 
1, you might end up predicting some probabilities that are less than 0 or greater than 
1, which doesn’t make sense. Instead, we’ll use a logistic regression model (or logit 
model) which was designed for assigning a probability between 0% and 100% that Y 
belongs to a certain class.

How does the math work?
Note: the math in this section is interesting but might be on the more technical side. 
Feel free to skim through it if you’re more interested in the high-level concepts.
The logit model is a modification of linear regression that makes sure to output a 
probability between 0 and 1 by applying the sigmoid function, which, when graphed, 
looks like the characteristic S-shaped curve that you’ll see a bit later.

Part 2.2: Supervised Learning II
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Sigmoid function, which squashes values between 0 and 1.

Recall the original form of our simple linear regression model, which we’ll now call g(x) 
since we’re going to use it within a compound function:

Now, to solve this issue of getting model outputs less than 0 or greater than 1, we’re 
going to define a new function F(g(x)) that transforms g(x) by squashing the output of 
linear regression to a value in the [0,1] range. Can you think of a function that does this?

Are you thinking of the sigmoid function? Bam! Presto! You’re correct.

So we plug g(x) into the sigmoid function above, resulting in a function of our original 
function (yes, things are getting meta) that outputs a probability between 0 and 1:

In other words, we’re calculating the probability that the training example belongs to a 
certain class: P(Y=1).

Here we’ve isolated p, the probability that Y=1, on the left side of the equation. If we 
want to solve for a nice clean β0 + β1x + ϵ on the right side so we can straightforwardly 
interpret the beta coefficients we’re going to learn, we’d instead end up with the log-
odds ratio, or logit, on the left side — hence the name “logit model”:

Part 2.2: Supervised Learning II
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The log-odds ratio is simply the natural log of the odds ratio, p/(1-p), which crops up in 
everyday conversations:

“Yo, what do you think are the odds that Tyrion Lannister dies in this 
season of Game of Thrones?”

“Hmm. It’s definitely 2x more likely to happen than not. 2-to-1 odds. 
Sure, he might seem too important to be killed, but we all saw what 
they did to Ned Stark…”

Note that in the logit model, β1 now represents the rate of change in the log-odds 
ratio as X changes. In other words, it’s the “slope of log-odds”, not the “slope of the 
probability”.

Log-odds might be slightly unintuitive but it’s worth understanding since it will 
come up again when you’re interpreting the output of neural networks performing 
classification tasks.

Part 2.2: Supervised Learning II
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Using the output of a logistic regression model to make decisions

The output of the logistic regression model from above looks like an S-curve showing 
P(Y=1) based on the value of X:

Source: Wikipedia

To predict the Y label — spam/not spam, cancer/not cancer, fraud/not fraud, etc. — you 
have to set a probability cutoff, or threshold, for a positive result. For example: “If our 
model thinks the probability of this email being spam is higher than 70%, label it spam. 
Otherwise, don’t.”

The threshold depends on your tolerance for false positives vs. false negatives. If 
you’re diagnosing cancer, you’d have a very low tolerance for false negatives, because 
even if there’s a very small chance the patient has cancer, you’d want to run further 
tests to make sure. So you’d set a very low threshold for a positive result.
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In the case of fraudulent loan applications, on the other hand, the tolerance for false 
positives might be higher, particularly for smaller loans, since further vetting is costly 
and a small loan may not be worth the additional operational costs and friction for non-
fraudulent applicants who are flagged for further processing.

Minimizing loss with logistic regression
As in the case of linear regression, we use gradient descent to learn the beta 
parameters that minimize loss.

In logistic regression, the cost function is basically a measure of how often you 
predicted 1 when the true answer was 0, or vice versa. Below is a regularized cost 
function just like the one we went over for linear regression.

Don’t panic when you see a long equation like this! Break it into chunks and think 
about what’s going on in each part conceptually. Then the specifics will start to make 
sense.

The first chunk is the data loss, i.e. how much discrepancy there is between the model’s 
predictions and reality. The second chunk is the regularization loss, i.e. how much we 
penalize the model for having large parameters that heavily weight certain features 
(remember, this prevents overfitting).

We’ll minimize this cost function with gradient descent, as above, and voilà! we’ve built 
a logistic regression model to make class predictions as accurately as possible.
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Support vector machines (SVMs)
“We’re in a room full of marbles again. Why are we always in a room full of marbles? I 
could’ve sworn we already lost them.”

SVM is the last parametric model we’ll cover. It typically solves the same problem as 
logistic regression — classification with two classes — and yields similar performance. 
It’s worth understanding because the algorithm is geometrically motivated in nature, 
rather than being driven by probabilistic thinking.

A few examples of the problems SVMs can solve:
• Is this an image of a cat or a dog?
• Is this review positive or negative?
• Are the dots in the 2D plane red or blue?

We’ll use the third example to illustrate how SVMs work. Problems like these are called 
toy problems because they’re not real — but nothing is real, so it’s fine.

In this example, we have points in a 2D space that are either red or blue, and we’d like 
to cleanly separate the two.

The training set is plotted the graph above. We would like to classify new, unclassified 
points in this plane. To do this, SVMs use a separating line (or, in more than two 
dimensions, a multi-dimensional hyperplane) to split the space into a red zone and 
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a blue zone. You can already imagine how a separating line might look in the 
graph above.

How, specifically, do we choose where to draw the line?

Below are two examples of such a line:

These charts were made with Microsoft Paint, which was deprecated a few weeks ago after 32 wonderful years. 
RIP Paint :(

Hopefully, you share the intuition that the first line is superior. The distance to the 
nearest point on either side of the line is called the margin, and SVM tries to maximize 
the margin. You can think about it like a safety space: the bigger that space, the less 
likely that noisy points get misclassified.
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Based on this short explanation, a few big questions come up.

1. How does the math behind this work?

We want to find the optimal hyperplane (a line, in our 2D example). This hyperplane 
needs to (1) separate the data cleanly, with blue points on one side of the line and 
red points on the other side, and (2) maximize the margin. This is an optimization 
problem. The solution has to respect constraint (1) while maximizing the margin as is 
required in (2).

The human version of solving this problem would be to take a ruler and keep trying 
different lines separating all the points until you get the one that maximizes the margin.

It turns out there’s a clean mathematical way to do this maximization, but the specifics 
are beyond our scope. To explore it further, here’s a video lecture that shows how it 
works using Lagrangian Optimization.

The solution hyperplane you end up with is defined in relation to its position with 
respect to certain x_i’s, which are called the support vectors, and they’re usually the 
ones closest to the hyperplane.

2. What happens if you can’t separate the data cleanly?

There are two methods for dealing with this problem.

2.1. Soften the definition of “separate”.
We allow a few mistakes, meaning we allow some blue points in the red zone or some 
red points in the blue zone. We do that by adding a cost C for misclassified examples 
in our loss function. Basically, we say it’s acceptable but costly to misclassify a point.

2.2. Throw the data into higher dimensions.
We can create nonlinear classifiers by increasing the number of dimensions, i.e. include 
x², x³, even cos(x), etc. Suddenly, you have boundaries that can look more squiggly 
when we bring them back to the lower dimensional representation.
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Intuitively, this is like having red and blue marbles lying on the ground such that they 
can’t be cleanly separated by a line — but if you could make all the red marbles levitate 
off the ground in just the right way, you could draw a plane separating them. Then you 
let them fall back to the ground knowing where the blues stop and reds begin.

A nonseparable dataset in a two-dimensional space R², and the same dataset mapped 
onto threedimensions with the third dimension being x²+y² (source: http://www.eric-
kim.net/eric-kim-net/posts/1/kernel_trick.html)

The decision boundary is shown in green, first in the three-dimensional space (left), 
then back in the two-dimensional space (right). Same source as previous image.

In summary, SVMs are used for classification with two classes. They attempt to find a 
plane that separates the two classes cleanly. When this isn’t possible, we either soften 
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the definition of “separate,” or we throw the data into higher dimensions so that we 
can cleanly separate the data.

Success!

In this section we covered:

• The classification task of supervised learning
• Two foundational classification methods: logistic regression and support 

vector machines (SVMs)
• Recurring concepts: the sigmoid function, log-odds (“logit”), and false 

positives vs. false negatives,

In Part 2.3: Supervised Learning III, we’ll go into non-parametric supervised 
learning, where the ideas behind the algorithms are very intuitive and 
performance is excellent for certain kinds of problems, but the models can be 
harder to interpret.

Practice materials & further reading

2.2a — Logistic regression
Data School has an excellent in-depth guide to logistic regression. We’ll also 
continue to refer you to An Introduction to Statistical Learning. See Chapter 4 
on logistic regression, and Chapter 9 on support vector machines.

To implement logistic regression, we recommend working on this problem set. 
You have to register on the site to work through it, unfortunately. C’est la vie.

2.2b — Down the SVM rabbit hole
To dig into the math behind SVMs, watch Prof. Patrick Winston’s lecture from 
MIT 6.034: Artificial Intelligence. And check out this tutorial to work through a 
Python implementation.
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Non-parametric models: k-nearest neighbors, decision trees, and random 

forests. Introducing cross-validation, hyperparameter tuning, and ensemble 

models.

Non-parametric learners.
Things are about to get a little… wiggly.

In contrast to the methods we’ve covered so far — linear regression, logistic regression, 
and SVMs where the form of the model was pre-defined — non-parametric learners do 
not have a model structure specified a priori. We don’t speculate about the form of the 
function f that we’re trying to learn before training the model, as we did previously with 
linear regression. Instead, the model structure is purely determined from the data.

These models are more flexible to the shape of the training data, but this sometimes 
comes at the cost of interpretability. This will make more sense soon. Let’s jump in.

k-nearest neighbors (k-NN)
“You are the average of your k closest friends.”

k-NN seems almost too simple to be a machine learning algorithm. The idea is to label 
a test data point x by finding the mean (or mode) of the k closest data points’ labels.

Take a look at the image below. Let’s say you want to figure out whether Mysterious 
Green Circle is a Red Triangle or a Blue Square. What do you do?

Part 2.3: Supervised Learning III
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You could try to come up with a fancy equation that looks at where Green Circle lies on 
the coordinate plane below and makes a prediction accordingly. Or, you could just look 
its three nearest neighbors, and guess that Green Circle is probably a Red Triangle. You 
could also expand the circle further and look at the five nearest neighbors, and make 
a prediction that way (3/5 of its five nearest neighbors are Blue Squares, so we’d guess 
that Mysterious Green Circle is a Blue Square when k=5).

k-NN illustration with k=1, 3, and 5. To classify the Mysterious Green Circle (x) above, look at its single nearest neighbor, 

a “Red Triangle”. So, we’d guess that ŷ = “Red Triangle”. With k=3, look at the 3 nearest neighbors: the mode of these is 

again “Red Triangle” so ŷ= “Red Triangle”. With k=5, we take the mode of the 5 nearest neighbors instead. Now, notice 

that ŷ becomes “Blue Square”. Image from Wikipedia.
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That’s it. That’s k-nearest neighbors. You look at the k closest data points and take the 
average of their values if variables are continuous (like housing prices), or the mode if 
they’re categorical (like cat vs. dog).

If you wanted to guess unknown house prices, you could just take the average of 
some number of geographically nearby houses, and you’d end up with some pretty 
nice guesses. These might even outperform a parametric regression model built by 
some economist that estimates model coefficients for # of beds/baths, nearby schools, 
distance to public transport, etc.

How to use k-NN to predict housing prices:

1) Store the training data, a matrix X of features like zip code, neighborhood, # of 

bedrooms, square feet, distance from public transport, etc., and a matrix Y of corresponding 

sale prices.

2) Sort the houses in your training data set by similarity to the house in question, 

based on the features in X. We’ll define “similarity” below.

3) Take the mean of the k closest houses. That is your guess at the sale price (i.e. ŷ)

The fact that k-NN doesn’t require a pre-defined parametric function f(X) relating Y 
to X makes it well-suited for situations where the relationship is too complex to be 
expressed with a simple linear model.

Distance metrics: defining and calculating “nearness”
How do you calculate distance from the data point in question when finding the 
“nearest neighbors”? How do you mathematically determine which of the Blue 
Squares and Red Triangles in the example above are closest to Green Circle, especially 
if you can’t just draw a nice 2D graph and eyeball it?
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The most straightforward measure is Euclidean distance (a straight line, “as the crow 
flies”). Another is Manhattan distance, like walking city blocks. You could imagine 
that Manhattan distance is more useful in a model involving fare calculation for Uber 
drivers, for example.

Green line = Euclidean distance. Blue line = Manhattan distance. Source: Wikipedia

Remember the Pythagorean theorem for finding the length of the hypotenuse of a 
right triangle?

c = length of hypotenuse (green line above). a and b = length of the other sides, at a right angle (red lines above).
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Solving in terms of c, we find the length of the hypotenuse by taking the square root 
of the sum of squared lengths of a and b, where a and b are orthogonal sides of the 
triangle (i.e. they are at a 90-degree angle from one another, going in perpendicular 
directions in space).

This idea of finding the length of the hypotenuse given vectors in two orthogonal 
directions generalizes to many dimensions, and this is how we derive the formula for 
Euclidean distance d(p,q) between points p and q in n-dimensional space:

Formula for Euclidean distance, derived from the Pythagorean theorem.
With this formula, you can calculate the nearness of all the training data points to the 
data point you’re trying to label, and take the mean/mode of the k nearest neighbors 
to make your prediction.

Typically you won’t need to calculate any distance metrics by hand — a quick Google 
search reveals pre-built functions in NumPy or SciPy that will do this for you,
e.g. euclidean_dist = numpy.linalg.norm(p-q)— but it’s fun to see how geometry 
concepts from eighth grade end up being helpful for building ML models today!
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Choosing k: tuning hyperparameters with cross-validation
To decide which value of k to use, you can test different k-NN models using different values of 

k with cross-validation:

1. Split your training data into segments, and train your model on all but one of the 

segments; use the held-out segment as the “test” data.

2. See how your model performs by comparing your model’s predictions (ŷ) to the actual 

values of the test data (y).

3. Pick whichever yields the lowest error, on average, across all iterations.

Cross-validation illustrated. The number of splits and iterations can be varied.
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Higher k prevents overfitting

Higher values of k help address overfitting, but if the value of k is too high your model 
will be very biased and inflexible. To take an extreme example: if k = N (the total 
number of data points), the model would just dumbly blanket-classify all the test data 
as the mean or mode of the training data.

If the single most common animal in a data set of animals is a Scottish Fold kitten, 
k-NN with k set to N (the # of training observations) would then predict that every other 
animal in the world is also a Scottish Fold kitten. Which, in Vishal’s opinion, would be 
awesome. Samer disagrees.

Completely gratuitous Scottish Fold .gif. We’ll call it a study break. 
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Where to use k-NN in the real world
Some examples of where you can use k-NN:

• Classification: fraud detection. The model can update virtually instantly with new 
training examples since you’re just storing more data points, which allows quick 
adaptation to new methods of fraud.

• Regression: predicting housing prices. In housing price prediction, literally being 
a “near neighbor” is actually a good indicator of being similar in price. k-NN is 
useful in domains where physical proximity matters.

• Imputing missing training data. If one of the columns in your .csv has lots of 
missing values, you can impute the data by taking the mean or mode. k-NN 
could give you a somewhat more accurate guess at each missing value.

Decision trees, random forests

Making a good decision tree is like playing a game of “20 questions”.

The decision tree on the right describes survival patterns on the Titanic.
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The first split at the root of a decision tree should be like the first question you should 
ask in 20 questions: you want to separate the data as cleanly as possible, thereby 
maximizing information gain from that split.

If your friend says “I’m thinking of a noun, ask me up to 20 yes/no questions to guess 
what it is” and your first question is “is it a potato?”, then you’re a dumbass, because 
they’re going to say no and you gained almost no information. Unless you happen to 
know your friend thinks about potatoes all the time, or is thinking about one right now. 
Then you did a great job.

Instead, a question like “is it an object?” might make more sense.

This is kind of like how hospitals triage patients or approach differential diagnoses. 
They ask a few questions up front and check some basic vitals to determine if you’re 
going to die imminently or something. They don’t start by doing a biopsy to check if 
you have pancreatic cancer as soon as you walk in the door.

There are ways to quantify information gain so that you can essentially evaluate every 
possible split of the training data and maximize information gain for every split. This 
way you can predict every label or value as efficiently as possible.

Now, let’s look at a particular data set and talk about how we choose splits.

The Titanic dataset
Kaggle has a Titanic dataset that is used for a lot of machine learning intros. When the 
titanic sunk, 1,502 out of 2,224 passengers and crew were killed. Even though there was 
some luck involved, women, children, and the upper-class were more likely to survive. 
If you look back at the decision tree above, you’ll see that it somewhat reflects this 
variability across gender, age, and class.
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Choosing splits in a decision tree
Entropy is the amount of disorder in a set (measured by Gini index or cross-entropy). If 
the values are really mixed, there’s lots of entropy; if you can cleanly split values, there’s 
no entropy. For every split at a parent node, you want the child nodes to be as pure as 
possible — minimize entropy. For example, in the Titanic, gender is a big determinant 
of survival, so it makes sense for this feature to be used in the first split as it’s the one 
that leads to the most information gain.

Let’s take a look at our Titanic variables:

Source: Kaggle

We build a tree by picking one of these variables and splitting the dataset according to it.
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The first split separates our dataset into men and women. Then, the women branch 
gets split again in age (the split that minimizes entropy). Similarly, the men branch gets 
split by class. By following the tree for a new passenger, you can use the tree to make a 
guess at whether they died.

The Titanic example is solving a classification problem (“survive” or “die”). If we were 
using decision trees for regression — say, to predict housing prices — we would create 
splits on the most important features that determine housing prices. How many square 
feet: more than or less than ___? How many bedrooms & bathrooms: more than or less 
than ___?

Then, during testing, you would run a specific house through all the splits and take the 
average of all the housing prices in the final leaf node (bottom-most node) where the 
house ends up as your prediction for the sale price.
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There are a few hyperparameters you can tune with decision trees models, including 

max_depth and max_leaf_nodes. See the scikit-learn module on decision trees for advice 
on defining these parameters.

Decision trees are effective because they are easy to read, powerful even with messy 
data, and computationally cheap to deploy once after training. Decision trees are also 
good for handling mixed data (numerical or categorical).

That said, decision trees are computationally expensive to train, carry a big risk of 
overfitting, and tend to find local optima because they can’t go back after they have 
made a split. To address these weaknesses, we turn to a method that illustrates the 
power of combining many decision trees into one model.

Random forest: an ensemble of decision trees
A model comprised of many models is called an ensemble model, and this is usually a 
winning strategy.

A single decision tree can make a lot of wrong calls because it has very black-and-white 
judgments. A random forest is a meta-estimator that aggregates many decision trees, 
with some helpful modifications:

1. The number of features that can be split on at each node is limited to some percentage 

of the total (this is a hyperparameter you can choose — see scikit-learn documentation for 

details). This ensures that the ensemble model does not rely too heavily on any individual 

feature, and makes fair use of all potentially predictive features.

2. Each tree draws a random sample from the original data set when generating its splits, 

adding a further element of randomness that prevents overfitting.

These modifications also prevent the trees from being too highly correlated. Without #1 and 

#2 above, every tree would be identical, since recursive binary splitting is deterministic.
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To illustrate, see these nine decision tree classifiers below.

Source: http://xenon.stanford.edu/~jianzh/ml/

These decision tree classifiers can be aggregated into a random forest ensemble 
which combines their input. Think of the horizontal and vertical axes of each decision 
tree output as features x1 and x2. At certain values of each feature, the decision tree 
outputs a classification of “blue”, “green”, “red”, etc.

Source: http://xenon.stanford.edu/~jianzh/ml/
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These results are aggregated, through modal votes or averaging, into a single 
ensemble model that ends up outperforming any individual decision tree’s output.

Random forests are an excellent starting point for the modeling process, since they 
tend to have strong performance with a high tolerance for less-cleaned data and can 
be useful for figuring out which features actually matter among many features.

There are many other clever ensemble models that combine decision trees and 
yield excellent performance — check out XGBoost (Extreme Gradient Boosting) as an 
example.

And with that, we conclude our study of supervised learning!

Nice work. In this section we’ve covered:

• Two non-parametric supervised learning algorithms: k-NN and decision 
trees

• Measures of distance and information gain
• Random forests, which are an example of an ensemble model
• Cross-validation and hyperparameter tuning

Hopefully, you now have some solid intuitions for how we learn f  given a training 
data set and use this to make predictions with the test data.

Next, we’ll talk about how to approach problems where we don’t have any 
labeled training data to work with, in Part 3: Unsupervised Learning.

Practice materials & further reading
2.3a — Implementing k-NN
Try this walkthrough for implementing k-NN from scratch in Python. You may also 
want to take a look at the scikit-learn documentation to get a sense of how pre-
built implementations work.
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2.3b — Decision trees
Try the decision trees lab in Chapter 8 of An Introduction to Statistical Learning. 
You can also play with the Titanic dataset, and check out this tutorial which 
covers the same concepts as above with accompanying code. Here is the scikit-
learn implementation of random forest for out-of-the-box use on data sets.

Part 3: Unsupervised Learning

Clustering and dimensionality reduction: k-means clustering, hierarchical clustering, 
principal component analysis (PCA), singular value decomposition (SVD)

How do you find the underlying structure of a dataset? How do you summarize it and 
group it most usefully? How do you effectively represent data in a compressed format? 
These are the goals of unsupervised learning, which is called “unsupervised” because 
you start with unlabeled data (there’s no Y).

The two unsupervised learning tasks we will explore are clustering the data into groups 
by similarity and reducing dimensionality to compress the data while maintaining its 
structure and usefulness.

Examples of where unsupervised learning methods might be useful:

- An advertising platform segments the U.S. population into smaller groups with similar demographics 

and purchasing habits so that advertisers can reach their target market with relevant ads.

- Airbnb groups its housing listings into neighborhoods so that users can navigate listings more easily.

- A data science team reduces the number of dimensions in a large data set to simplify modeling and 

reduce file size.
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In contrast to supervised learning, it’s not always easy to come up with metrics for how 
well an unsupervised learning algorithm is doing. “Performance” is often subjective 
and domain-specific.

Clustering

An interesting example of clustering in the real world is marketing data provider 
Acxiom’s life stage clustering system, Personicx. This service segments U.S. households 
into 70 distinct clusters within 21 life stage groups that are used by advertisers when 
targeting Facebook ads, display ads, direct mail campaigns, etc.

Their white paper reveals that they used centroid clustering and principal components 
analysis, both of which are techniques covered in this section.

You can imagine how having access to these clusters is extremely useful for advertisers 
who want to (1) understand their existing customer base and (2) use their ad spend 
effectively by targeting potential new customers with relevant demographics, interests, 
and lifestyles.

A selection of Personicx demographic clusters
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You can actually find out which cluster you personally would belong to by answering a few simple questions in Acxiom’s 

“What’s My Cluster?” tool.

Let’s walk through a couple of clustering methods to develop intuition for how this task 
can be performed.

k-means clustering
“And k rings were given to the race of Centroids, who above all else, desire power.”

The goal of clustering is to create groups of data points such that points in different 
clusters are dissimilar while points within a cluster are similar.

With k-means clustering, we want to cluster our data points into k groups. A larger k 
creates smaller groups with more granularity, a lower k means larger groups and less 
granularity.

The output of the algorithm would be a set of “labels” assigning each data point to 
one of the k groups. In k-means clustering, the way these groups are defined is by 
creating a centroid for each group. The centroids are like the heart of the cluster, they 
“capture” the points closest to them and add them to the cluster.

Part 3: Unsupervised Learning



58

Machine Learning for Humans

Think of these as the people who show up at a party and soon become the centers of 
attention because they’re so magnetic. If there’s just one of them, everyone will gather 
around; if there are lots, many smaller centers of activity will form.

That, in short, is how k-means clustering works! Check out this visualization of the 
algorithm — read it like a comic book. Each point in the plane is colored according the 
centroid that it is closest to at each moment. You’ll notice that the centroids (the larger 
blue, red, and green circles) start randomly and then quickly adjust to capture their 
respective clusters.

Here are the steps to k-means clustering:

1. Define the k centroids. Initialize these at random (there are also fancier algorithms for 

initializing the centroids that end up converging more effectively).

2. Find the closest centroid & update cluster assignments. Assign each data point to one 

of the k clusters. Each data point is assigned to the nearest centroid’s cluster. Here, the 

measure of “nearness” is a hyperparameter — often Euclidean distance.

3. Move the centroids to the center of their clusters. The new position of each centroid is 

calculated as the average position of all the points in its cluster.

Keep repeating steps 2 and 3 until the centroid stop moving a lot at each iteration (i.e., until 

the algorithm converges)
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Another real-life application of k-means clustering is classifying handwritten digits. 
Suppose we have images of the digits as a long vector of pixel brightnesses. Let’s 
say the images are black and white and are 64x64 pixels. Each pixel represents a 
dimension. So the world these images live in has 64x64=4,096 dimensions. In this 
4,096-dimensional world, k-means clustering allows us to group the images that are 
close together and assume they represent the same digit, which can achieve pretty 
good results for digit recognition.

Hierarchical clustering
“Let’s make a million options become seven options. Or five. Or twenty? Meh, we can 
decide later.”

Hierarchical clustering is similar to regular clustering, except that you’re aiming to build 
a hierarchy of clusters. This can be useful when you want flexibility in how many clusters 
you ultimately want. For example, imagine grouping items on an online marketplace 
like Etsy or Amazon. On the homepage you’d want a few broad categories of items for 
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simple navigation, but as you go into more specific shopping categories you’d want 
increasing levels of granularity, i.e. more distinct clusters of items.

In terms of outputs from the algorithm, in addition to cluster assignments you also 
build a nice tree that tells you about the hierarchies between the clusters. You can then 
pick the number of clusters you want from this tree.

Here are the steps for hierarchical clustering:

1. Start with N clusters, one for each data point.

2. Merge the two clusters that are closest to each other. Now you have N-1 clusters.

3. Recompute the distances between the clusters. There are several ways to do 

this (see this tutorial for more details). One of them (called average-linkage clustering) is to 

consider the distance between two clusters to be the average distance between all their 

respective members.

4. Repeat steps 2 and 3 until you get one cluster of N data points. You get a tree 

(also known as a dendrogram) like the one below.

5. Pick a number of clusters and draw a horizontal line in the dendrogram. 
For example, if you want k=2 clusters, you should draw a horizontal line around 

“distance=20000.” You’ll get one cluster with data points 8, 9, 11, 16 and one cluster with 

the rest of the data points. In general, the number of clusters you get is the number of 

intersection points of your horizontal line with the vertical lines in the dendrogram.
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Source: Solver.com. For more detail on hierarchical clustering, you can check this video out.

Dimensionality reduction
“It is not the daily increase, but the daily decrease. Hack away at the 
unessential.” — Bruce Lee

Dimensionality reduction looks a lot like compression. This is about trying to reduce 
the complexity of the data while keeping as much of the relevant structure as possible. 
If you take a simple 128 x 128 x 3 pixels image (length x width x RGB value), that’s 
49,152 dimensions of data. If you’re able to reduce the dimensionality of the space in 
which these images live without destroying too much of the meaningful content in the 
images, then you’ve done a good job at dimensionality reduction.

We’ll take a look at two common techniques in practice: principal component analysis 
and singular value decomposition.
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Principal component analysis (PCA)
First, a little linear algebra refresher — let’s talk about spaces and bases.

You’re familiar with the coordinate plane with origin O(0,0) and basis vectors i(1,0) and 
j(0,1). It turns out you can choose a completely different basis and still have all the math 
work out. For example, you can keep O as the origin and choose the basis to vectors 
i’=(2,1) and j’=(1,2). If you have the patience for it, you’ll convince yourself that the 
point labeled (2,2) in the i’, j’ coordinate system is labeled (6, 6) in the i, j system.

Plotted using Mathisfun’s “Interactive Cartesian Coordinates”
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This means we can change the basis of a space. Now imagine much higher-
dimensional space. Like, 50K dimensions. You can select a basis for that space, and 
then select only the 200 most significant vectors of that basis. These basis vectors 
are called principal components, and the subset you select constitute a new space 
that is smaller in dimensionality than the original space but maintains as much of the 
complexity of the data as possible.

To select the most significant principal components, we look at how much of the data’s 
variance they capture and order them by that metric.

Another way of thinking about this is that PCA remaps the space in which our data 
exists to make it more compressible. The transformed dimension is smaller than the 
original dimension.

By making use of the first several dimensions of the remapped space only, we can 
start gaining an understanding of the dataset’s organization. This is the promise 
of dimensionality reduction: reduce complexity (dimensionality in this case) while 
maintaining structure (variance). Here’s a fun paper Samer wrote on using PCA (and 
diffusion mapping, another technique) to try to make sense of the Wikileaks cable 
release.

Singular value decomposition (SVD)
Let’s represent our data like a big A = m x n matrix. SVD is a computation that allows us 
to decompose that big matrix into a product of 3 smaller matrices (U=m x r, diagonal 
matrix Σ=r x r, and V=r x n where r is a small number).
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Here’s a more visual illustration of that product to start with:

The values in the r*r diagonal matrix Σ are called singular values. What’s cool about 
them is that these singular values can be used to compress the original matrix. If 
you drop the smallest 20% of singular values and the associated columns in matrices 
U and V, you save quite a bit of space and still get a decent representation of the 
underlying matrix.

To examine what that means more precisely, let’s work with this image of a dog:
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We’ll use the code written in Andrew Gibiansky’s post on SVD. First, we show that if we 
rank the singular values (the values of the matrix Σ) by magnitude, the first 50 singular 
values contain 85% of the magnitude of the whole matrix Σ.
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We can use this fact to discard the next 250 values of sigma (i.e., set them to 0) and 
just keep a “rank 50” version of the image of the dog. Here, we create a rank 200, 
100, 50, 30, 20, 10, and 3 dog. Obviously, the picture is smaller, but let’s agree that 
the rank 30 dog is still good. Now let’s see how much compression we achieve with 
this dog. The original image matrix is 305*275 = 83,875 values. The rank 30 dog is 
305*30+30+30*275=17,430 — almost 5 times fewer values with very little loss in image 
quality. The reason for the calculation above is that we also discard the parts of the 
matrix U and V that get multiplied by zeros when the operation UΣ’V is carried out 
(where Σ’ is the modified version of Σ that only has the first 30 values in it).

Part 3: Unsupervised Learning



67

Machine Learning for Humans

Unsupervised learning is often used to preprocess the data. Usually, that means 
compressing it in some meaning-preserving way like with PCA or SVD before feeding it 
to a deep neural net or another supervised learning algorithm.

Onwards!

Next up… Part 4: Neural Networks & Deep Learning!

Practice materials & further reading
3a — k-means clustering
Play around with this clustering visualization to build intuition for how the 
algorithm works. Then, take a look at this implementation of k-means clustering 
for handwritten digits and the associated tutorial.

3b — SVD
For a good reference on SVD, go no further than Andrew Gibiansky’s post.

Now that you’ve finished this section, you’ve earned an awful, horrible, never-to-
be-mentioned-again joke about unsupervised learning. Here goes…

Person-in-joke-#1: Y would u ever need to use unsupervised tho?
Person-in-joke-#2: Y? there’s no Y.
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Part 4: Neural Networks & Deep Learning

Where, why, where, and how deep neural networks work. Drawing inspiration from the 
brain. Convolutional neural networks (CNNs) and recurrent neural networks (RNNs). 
Real-world applications.

Y = f(X) + ϵ
Training: machine learns f  from labeled training data

Testing: machine predicts Y from unlabeled testing data

With deep learning, we’re still learning a function f to map input X to output Y with 
minimal loss on the test data, just as we’ve been doing all along. Recall our initial 
“problem statement” from Part 2.1 on supervised learning:

The real world is messy, so sometimes f  is complicated. In natural language problems 
large vocabulary sizes mean lots of features. Vision problems involve lots of visual 
information about pixels. Playing games requires making a decision based on complex 
scenarios with many possible futures. The learning techniques we’ve covered so far do 
well when the data we’re working with is not insanely complex, but it’s not clear how 
they’d generalize to scenarios like these.

Deep learning is really good at learning f, particularly in situations where the 
data is complex. In fact, artificial neural networks are known as universal function 
approximators because they’re able to learn any function, no matter how wiggly, with 
just a single hidden layer.

Let’s look at the problem of image classification. We take an image as an input, and 
output a class (e.g., dog, cat, car).
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Graphically, a deep neural network solving image classification looks something like 
this:

But really, this is a giant mathematical equation with millions of terms and lots of 
parameters. The input X is, say, a greyscale image represented by a w-by-h matrix of 
pixel brightnesses. The output Y is a vector of class probabilities. This means we have 
as an output the probability of each class being the correct label. If this neural net is 
working well, the highest probability should be for the correct class. And the layers in 
the middle are just doing a bunch of matrix multiplication by summing activations x 
weights with non-linear transformations (activation functions) after every hidden layer 
to enable the network to learn a non-linear function.

Incredibly, you can use gradient descent in the exact same way that we did with linear 
regression in Part 2.1 to train these parameters in a way that minimizes loss. So with 
a lot of examples and a lot of gradient descent, the model can learn how to classify 
images of animals correctly. And that, in a nutshell’s nutshell, is “deep learning”.

Image from Jeff Clune’s 1-hour Deep Learning Overview on YouTube
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Where deep learning does well, and some history

Artificial neural networks have actually been around for a long time. Their application 
has been historically referred to as cybernetics (1940s-1960s), connectionism 
(1980s-1990s), and then came into vogue as deep learning circa 2006 when neural 
networks started getting, well, “deeper” (Goodfellow et al., 2016). But only recently 
have we really started to scratch the surface of their full potential.

As described by Andrej Karpathy (Director of AI at Tesla, whom we tend to think of as 
the Shaman of Deep Learning), there are generally “four separate factors that hold 
back AI:

1. Compute (the obvious one: Moore’s Law, GPUs, ASICs),

2. Data (in a nice form, not just out there somewhere on the internet — e.g. 
ImageNet),

3. Algorithms (research and ideas, e.g. backprop, CNN, LSTM), and

4. Infrastructure (software under you — Linux, TCP/IP, Git, ROS, PR2, AWS, 
AMT, TensorFlow, etc.)” (Karpathy, 2016).

In the past decade or so, the full potential of deep learning is finally being unlocked 
by advances in (1) and (2), which in turn has led to further breakthroughs in (3) and 
(4) — and so the cycle continues, with exponentially more humans rallying to the 
frontlines of deep learning research along the way (just think about what you’re doing 
right now!)
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Illustration by NVIDIA, a leading maker of graphics processing units (GPUs) which were originally built for for gaming 

but turned out to be well-suited to the type of parallel computing required by deep neural networks

In the rest of this section, we’ll provide some background from biology and statistics 
to explain what happens inside neural nets, and then talk through some amazing 
applications of deep learning. Finally, we’ll link to a few resources so you can apply 
deep learning yourself, even sitting on the couch in your pajamas with a laptop, to 
quickly achieve greater-than-human-level performance on certain types of problems.

Drawing inspiration from the brain (or is it just statistics?) — what happens 
inside neural nets

Neurons, feature learning, and layers of abstraction
As you read these words you aren’t examining every letter of every word, or every 
pixel making up each letter, to derive the meaning of the words. You’re abstracting 
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away from the details and grouping things into higher-level concepts: words, phrases, 
sentences, paragraphs.

The same thing happens in vision, not just in humans but in animals’ visual systems 
generally.

Brains are made up of neurons which “fire” by emitting electrical signals to other 
neurons after being sufficiently “activated”. These neurons are malleable in terms of 
how much a signal from other neurons will add to the activation level of the neuron 
(vaguely speaking, the weights connecting neurons to each other end up being 
trained to make the neural connections more useful, just like the parameters in a linear 
regression can be trained to improve the mapping from input to output).

Tihs abiilty to exaimne hgiher-lveel fteaures is waht aollws yuo to unedrtsand waht is hpapening 

in tihs snetecne wthiout too mcuh troulbe (or myabe yuo sned too mnay dnruk txets).

Side-by-side illustrations of biological and artificial neurons, via Stanford’s CS231n. This analogy can’t be taken too 
literally — biological neurons can do things that artificial neurons can’t, and vice versa — but it’s useful to understand the 

biological inspiration. See Wikipedia’s description of biological vs. artificial neurons for more detail.
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Our biological networks are arranged in a hierarchical manner, so that certain neurons 
end up detecting not extremely specific features of the world around us, but rather 
more abstract features, i.e. patterns or groupings of more low-level features. For 
example, the fusiform face area in the human visual system is specialized for facial 
recognition.

Top: Illustration of learning increasingly abstract features, via NVIDIA. Bottom: diagram of how an artificial neural 
network takes raw pixel inputs, develops intermediate “neurons” to detect higher-level features (e.g. presence of a 
nose), and combines the outputs of these to create a final output. Illustration from Neural Networks and Deep Learning 

(Nielsen, 2017).
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This hierarchical structure exhibited by biological neural networks was discovered in 
the 1950s when researchers David Hubel and Torsten Wiesel were studying neurons in 
the visual cortex of cats. They were unable to observe neural activation after exposing 
the cat to a variety of stimuli: dark spots, light spots, hand-waving, and even pictures 
of women in magazines. But in their frustration, as they removed a slide from the 
projector at a diagonal angle, they noticed some neural activity! It turned out that 
diagonal edges at a very particular angle were causing certain neurons to be activated.

Background via Knowing Neurons

This makes sense evolutionarily since natural environments are generally noisy and 
random (imagine a grassy plain or a rocky terrain). So when a feline in the wild perceives 
an “edge”, i.e. a line that contrasts from its background, this might indicate that an 
object or creature is in the visual field. When a certain combination of edge neurons are 
activated, those activations will combine to yield a yet more abstract activation, and so 
on, until the final abstraction is a useful concept, like “bird” or “wolf”.

The idea behind a deep neural network is to mimic a similar structure with layers of 
artificial neurons.

Why linear models don’t work
To draw from Stanford’s excellent deep learning course, CS231n: Convolutional Neural 
Networks and Visual Recognition, imagine that we want to train a neural network to 
classify images with the correct one of the following labels: ["plane", "car", "bird", 
"cat", "deer", "dog", "frog", "horse", "ship", "truck"].

One approach could be to construct a “template”, or average image, of each class of 
image using the training examples, and then use a nearest-neighbors algorithm during 
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testing to measure the distance of each unclassified image’s pixel values, in aggregate, 
to each template. This approach involves no layers of abstraction. It’s a linear model that 
combines all the different orientations of each type of image into one averaged blur.

For instance, it would take all the cars — regardless of whether they’re facing left, right, 
center, and regardless of their color — and average them. The template then ends up 
looking rather vague and blurry.

Notice that the horse template above appears to have two heads. This doesn’t 
really help us: we want to be able to detect right-facing horse or a left-facing horse 
separately, and then if either one of those features is detected, then we want to say 
we’re looking at a horse. This flexibility is provided by deep neural nets, as we will see 
in the next section.

Deep neural networks approach the image classification problem using 
layers of abstraction
To repeat what we explained earlier in this section: the input layer will take raw pixel 
brightnesses of an image. The final layer will be an output vector of class probabilities 
(i.e. the probability of the image being a “cat”, “car”, “horse”, etc.)

But instead of learning a simple linear model relating input to output, we’ll instead 
construct intermediate hidden layers of the network will learn increasingly abstract 
features, which enables us to not lose all the nuance in the complex data.

Example drawn from Stanford’s CS231n: Convolutional Neural Networks and Visual Recognition, 
Lecture 2.
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Source: Analytics Vidhya

Just as we described animal brains detecting abstract features, the artificial neurons 
in the hidden layers will learn to detect abstract concepts — whichever concepts 
are ultimately most useful for capturing the most information and minimizing loss 
in the accuracy of the network’s output (this is an instance of unsupervised learning 
happening within the network).

This comes at the cost of model interpretability, since as you add in more hidden layers 
the neurons start representing more and more abstract and ultimately unintelligible 
features — to the point that you may hear deep learning referred to as “black box 
optimization”, where you basically are just trying stuff somewhat at random and seeing 
what comes out, without really understanding what’s happening inside.
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Linear regression is interpretable because you decided which features to include in the 
model. Deep neural networks are harder to interpret because the features are learned 
and aren’t explained anywhere in English. It’s all in the machine’s imagination.

Some extensions and further concepts worth noting

• Deep learning software packages. You’ll rarely need to implement all the parts 

of neural networks from scratch because of existing libraries and tools that make deep 

learning implementations easier. There are many of these: TensorFlow, Caffe, Torch, 

Theano, and more.

• Convolutional neural networks (CNNs). CNNs are designed specifically for taking 

images as input, and are effective for computer vision tasks. They are also instrumental 

in deep reinforcement learning. CNNs are specifically inspired by the way animal visual 

cortices work, and they’re the focus of the deep learning course we’ve been referencing 

throughout this article, Stanford’s CS231n.

• Recurrent neural networks (RNNs). RNNs have a sense of built-in memory and are 

well-suited for language problems. They’re also important in reinforcement learning since 

they enable the agent to keep track of where things are and what happened historically 

even when those elements aren’t all visible at once. Christopher Olah wrote an excellent 

walkthrough of RNNs and LSTMs in the context of language problems.

• Deep reinforcement learning. This is one of the most exciting areas of deep learning 

research, at the heart of recent achievements like OpenAI defeating professional Dota 

2 players and DeepMind’s AlphaGo surpassing humans in the game of Go. We’ll dive 

deeper in Part 5, but essentially the goal is to apply all of the techniques in this post to the 

problem of teaching an agent to maximize reward. This can be applied in any context that 

can be gamified — from actual games like Counter Strike or Pacman, to self-driving cars, to 

trading stocks, to (ultimately) real life and the real world.

Part 4: Neural Networks & Deep Learning



78

Machine Learning for Humans

Deep learning applications
Deep learning is reshaping the world in virtually every domain. Here are a few 
examples of the incredible things that deep learning can do…

• Facebook trained a neural network augmented by short-term memory to 
intelligently answer questions about the plot of Lord of the Rings.

Research from FAIR (Facebook AI Research) applying deep neural networks augmented by separate short-term 
memory to intelligently answer questions about the LOTR storyline. This is the definition of epic.

• Self-driving cars rely on deep learning for visual tasks like understanding road 
signs, detecting lanes, and recognizing obstacles.

Source: Business Insider
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• Deep learning can be used for fun stuff like art generation. A tool called neural 
style can impressively mimic an artist’s style and use it to remix another image.

The style of Van Gogh’s Starry Night applied to a picture of Stanford’s campus, via Justin Johnson’s neural style 

implementation: https://github.com/jcjohnson/neural-style

Other noteworthy examples include:
• Predicting molecule bioactivity for drug discovery
• Face and object recognition for photo and video tagging
• Powering Google search results
• Natural language understanding and generation, e.g. Google Translate
• The Mars explorer robot Curiosity is autonomously selecting inspection-worthy 

soil targets based on visual examination
…and many, many, more.
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Now go do it!
We haven’t gone into as much detail here on how neural networks are set up in 
practice because it’s much easier to understand the details by implementing them 
yourself. Here are some amazing hands-on resources for getting started.

• Play around with the architecture of neural networks to see how different configurations 

affect network performance with the Google’s Neural Network Playground.

• Get up-and-running quickly with this tutorial by Google: TensorFlow and deep learning, 
without a PhD. Classify handwritten digits at >99% accuracy, get familiar with TensorFlow, 

and learn deep learning concepts within 3 hours.

• Then, work through at least the first few lectures of Stanford’s CS231n and the first 

assignment of building a two-layer neural network from scratch to really solidify the concepts 

covered in this article.

Further resources
Deep learning is an expansive subject area. Accordingly, we’ve also compiled some of 
the best resources we’ve encountered on the topic, in case you’d like to go… deeper.

• Deeplearning.ai, Andrew Ng’s new deep learning course with a comprehensive syllabus 

on the subject

• CS231n: Convolutional Neural Networks for Visual Recognition, Stanford’s deep learning 

course. One of the best treatments we’ve seen, with excellent lectures and illustrative problem sets

• Deep Learning & Neural Networks — accessible but rigorous

• Deep Learning Book — foundational, more mathematical

• Fast.ai — less theoretical, much more applied and black-boxy

• See Greg Brockman (CTO of OpenAI)’s answer to the question “What are the best ways to 

pick up Deep Learning skills as an engineer?” on Quora

Next up: time to play some games!
Last, but most certainly not least, is Part 5: Reinforcement Learning.
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Part 5: Reinforcement Learning

Exploration and exploitation. Markov decision processes. Q-learning, policy learning, 
and deep reinforcement learning.

“I just ate some chocolate for finishing the last section.”
In supervised learning, training data comes with an answer key from some godlike 
“supervisor”. If only life worked that way!

In reinforcement learning (RL) there’s no answer key, but your reinforcement learning 
agent still has to decide how to act to perform its task. In the absence of existing 
training data, the agent learns from experience. It collects the training examples (“this 
action was good, that action was bad”) through trial-and-error as it attempts its task, 
with the goal of maximizing long-term reward.

In this final section of Machine Learning for Humans, we will explore:

• The exploration/exploitation tradeoff
• Markov Decision Processes (MDPs), the classic setting for RL tasks
• Q-learning, policy learning, and deep reinforcement learning
• and lastly, the value learning problem

At the end, as always, we’ve compiled some favorite resources for further exploration.

Let’s put a robot mouse in a maze
The easiest context in which to think about reinforcement learning is in games with a 
clear objective and a point system.
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Say we’re playing a game where our mouse        is seeking the ultimate reward of 
cheese at the end of the maze (      +1000 points), or the lesser reward of water along 
the way (   +10 points). Meanwhile, robo-mouse wants to avoid locations that deliver an 
electric shock (    -100 points).

After a bit of exploration, the mouse might find the mini-paradise of three water 
sources clustered near the entrance and spend all its time exploiting that discovery by 
continually racking up the small rewards of these water sources and never going further 
into the maze to pursue the larger prize.

But as you can see, the mouse would then miss out on an even better oasis further in 
the maze, or the ultimate reward of cheese at the end!

This brings up the exploration/exploration tradeoff. One simple strategy for exploration 
would be for the mouse to take the best known action most of the time (say, 80% of 
the time), but occasionally explore a new, randomly selected direction even though it 
might be walking away from known reward.

The reward is cheese.
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This strategy is called the epsilon-greedy strategy, where epsilon is the percent of the 
time that the agent takes a randomly selected action rather than taking the action that 
is most likely to maximize reward given what it knows so far (in this case, 20%). We 
usually start with a lot of exploration (i.e. a higher value for epsilon). Over time, as the 
mouse learns more about the maze and which actions yield the most long-term reward, 
it would make sense to steadily reduce epsilon to 10% or even lower as it settles into 
exploiting what it knows.

It’s important to keep in mind that the reward is not always immediate: in the robot-
mouse example, there might be a long stretch of the maze you have to walk through 
and several decision points before you reach the cheese.

The agent observes the environment, takes an action to interact with the environment, and receives positive or negative 

reward. Diagram from Berkeley’s CS 294: Deep Reinforcement Learning by John Schulman & Pieter Abbeel

Markov Decision Processes (MDPs)
The mouse’s wandering through the maze can be formalized as a Markov Decision 
Process, which is a process that has specified transition probabilities from state to 
state. We will explain it by referring to our robot-mouse example. MDPs include:

1. A finite set of states. These are the possible positions of our mouse within 
the maze.

2. A set of actions available in each state. This is {forward, back} in a corridor 
and {forward, back, left, right} at a crossroads.
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3. Transitions between states. For example, if you go left at a crossroads 
you end up in a new position. These can be a set of probabilities that link 
to more than one possible state (e.g. when you use an attack in a game 
of Pokémon you can either miss, inflict some damage, or inflict enough 
damage to knock out your opponent).

4. Rewards associated with each transition. In the robot-mouse example, 
most of the rewards are 0, but they’re positive if you reach a point that has 
water or cheese and negative if you reach a point that has an electric shock.

5. A discount factor γ between 0 and 1. This quantifies the difference in 
importance between immediate rewards and future rewards. For example, 
if γ is .9, and there’s a reward of 5 after 3 steps, the present value of that 
reward is .9³*5.

6. Memorylessness. Once the current state is known, the history of the 
mouse’s travels through the maze can be erased because the current Markov 
state contains all useful information from the history. In other words, “the 
future is independent of the past given the present”.

Now that we know what an MDP is, we can formalize the mouse’s objective. We’re 
trying to maximize the sum of rewards in the long term:

Let’s look at this sum term by term. First of all, we’re summing across all time steps t. 
Let’s set γ at 1 for now and forget about it. r(x,a) is a reward function. For state x and 
action a (i.e., go left at a crossroads) it gives you the reward associated with taking that 
action a at state x. Going back to our equation, we’re trying to maximize the sum of 
future rewards by taking the best action in each state.
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Now that we’ve set up our reinforcement learning problem and formalized the goal, 
let’s explore some possible solutions.

Q-learning: learning the action-value function
Q-learning is a technique that evaluates which action to take based on an action-value 
function that determines the value of being in a certain state and taking a certain 
action at that state.

We have a function Q that takes as an input one state and one action and returns 
the expected reward of that action (and all subsequent actions) at that state. Before 
we explore the environment, Q gives the same (arbitrary) fixed value. But then, as we 
explore the environment more, Q gives us a better and better approximation of the 
value of an action a at a state s. We update our function Q as we go.

This equation from the Wikipedia page on Q-learning explains it all very nicely. It shows 
how we update the value of Q based on the reward we get from our environment:

Let’s ignore the discount factor γ by setting it to 1 again. First, keep in mind that Q 
is supposed to show you the full sum of rewards from choosing action Q and all the 
optimal actions afterward.

Now let’s go through the equation from left to right. When we take action at in state st, 
we update our value of Q(st,at) by adding a term to it. This term contains:

• Learning rate alpha: this is how aggressive we want to be when updating our 
value. When alpha is close to 0, we’re not updating very aggressively. When 
alpha is close to 1, we’re simply replacing the old value with the updated value.

• The reward is the reward we got by taking action at at state st. So we’re adding 
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this reward to our old estimate.
• We’re also adding the estimated future reward, which is the maximum achievable 

reward Q for all available actions at xt+1.
• Finally, we subtract the old value of Q to make sure that we’re only incrementing 

or decrementing by the difference in the estimate (multiplied by alpha of course).

Now that we have a value estimate for each state-action pair, we can select which 
action to take according to our action-selection strategy (we don’t necessarily just 
choose the action that leads to the most expected reward every time, e.g. with an 
epsilon-greedy exploration strategy we’d take a random action some percentage of 
the time).

In the robot mouse example, we can use Q-learning to figure out the value of each 
position in the maze and the value of the actions {forward, backward, left, right} at each 
position. Then we can use our action-selection strategy to choose what the mouse 
actually does at each time step.

Policy learning: a map from state to action
In the Q-learning approach, we learned a value function that estimated the value of 
each state-action pair.

Policy learning is a more straightforward alternative in which we learn a policy function, 
π, which is a direct map from each state to the best corresponding action at that 
state. Think of it as a behavioral policy: “when I observe state s, the best thing to 
do is take action a”. For example, an autonomous vehicle’s policy might effectively 
include something like: “if I see a yellow light and I am more than 100 feet from the 
intersection, I should brake. Otherwise, keep moving forward.”

A policy is a map from state to action.
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So we’re learning a function that will maximize expected reward. What do we know 
that’s really good at learning complex functions? Deep neural networks!

Andrej Karpathy’s Pong from Pixels provides an excellent walkthrough on using deep 
reinforcement learning to learn a policy for the Atari game Pong that takes raw pixels 
from the game as the input (state) and outputs a probability of moving the paddle up 
or down (action).

If you want to get your hands dirty with deep RL, work through Andrej’s post. You will 
implement a 2-layer policy network in 130 lines of code, and will also learn how to 
plug into OpenAI’s Gym, which allows you to quickly get up and running with your 
first reinforcement learning algorithm, test it on a variety of games, and see how its 
performance compares to other submissions.

DQNs, A3C, and advancements in deep RL
In 2015, DeepMind used a method called deep Q-networks (DQN), an approach that 
approximates Q-functions using deep neural networks, to beat human benchmarks 
across many Atari games:

In a policy gradient network, the agent learns the optimal policy by adjusting its weights through gradient descent based 

on reward signals from the environment. Image via http://karpathy.github.io/2016/05/31/rl/
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We demonstrate that the deep Q-network agent, receiving only the pixels and the 
game score as inputs, was able to surpass the performance of all previous algorithms 
and achieve a level comparable to that of a professional human games tester across a 
set of 49 games, using the same algorithm, network architecture and hyperparameters. 
This work bridges the divide between high-dimensional sensory inputs and actions, 
resulting in the first artificial agent that is capable of learning to excel at a diverse array 
of challenging tasks. (Silver et al., 2015)

Here is a snapshot of where DQN agents stand relative to linear learners and humans 
in various domains:

These are normalized with respect to professional human games testers: 0% = random play, 100% = human performance. 

Source: DeepMind’s DQN paper, Human-level control through deep reinforcement learning
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To help you build some intuition for how advancements are made in RL research, 
here are some examples of improvements on attempts at non-linear Q-function 
approximators that can improve performance and stability:

• Experience replay, which learns by randomizing over a longer sequence of 
previous observations and corresponding reward to avoid overfitting to recent 
experiences. This idea is inspired by biological brains: rats traversing mazes, for 
example, “replay” patterns of neural activity during sleep in order to optimize 
future behavior in the maze.

• Recurrent neural networks (RNNs) augmenting DQNs. When an agent can 
only see its immediate surroundings (e.g. robot-mouse only seeing a certain 
segment of the maze vs. a birds-eye view of the whole maze), the agent needs to 
remember the bigger picture so it remembers where things are. This is similar to 
how humans babies develop object permanence to know things exist even if they 
leave the baby’s visual field. RNNs are “recurrent”, i.e. they allow information to 
persist on a longer-term basis. Here’s an impressive video of a deep recurrent 
Q-network (DQRN) playing Doom.

In 2016, just one year after the DQN paper, DeepMind revealed another algorithm 
called Asynchronous Advantage Actor-Critic (A3C) that surpassed state-of-the-art 
performance on Atari games after training for half as long (Mnih et al., 2016). A3C is an 
actor-critic algorithm that combines the best of both approaches we explored earlier: 
it uses an actor (a policy network that decides how to act) AND a critic (a Q-network 
that decides how valuable things are). Arthur Juliani has a nice writeup on how A3C 
works specifically. A3C is now OpenAI’s Universe Starter Agent.

Paper: https://arxiv.org/abs/1609.05521. Source: Arthur Juliani’s Simple Reinforcement Learning 
with Tensorflow series
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Since then, there have been countless fascinating breakthroughs — from AIs inventing 
their own language to teaching themselves to walk in a variety of terrains. This series 
only scratches the surface on the cutting edge of RL, but hopefully it will serve as a 
starting point for further exploration!

As a parting note, we’d like to share this incredible video of DeepMind’s agents that 
learned to walk… with added sound. Grab some popcorn, turn up the volume, and 
witness the full glory of artificial intelligence.

Practice materials & further reading
Code

• Andrej Karpathy’s Pong from Pixels will get you up-and-running quickly with 
your first reinforcement learning agent. As the article describes, “we’ll learn 
to play an ATARI game (Pong!) with PG, from scratch, from pixels, with a deep 
neural network, and the whole thing is 130 lines of Python only using numpy as a 
dependency (Gist link).”

• Next, we’d highly recommend Arthur Juliani’s Simple Reinforcement Learning 
with Tensorflow tutorial. It walks through DQNs, policy learning, actor-critic 
methods, and strategies for exploration with implementations using TensorFlow. 
Try understanding and then re-implementing the methods covered.
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Reading + lectures
• Richard Sutton’s book, Reinforcement Learning: An Introduction — a fantastic 

book, very readable

• John Schulman’s CS 294: Deep Reinforcement Learning (Berkeley)

• David Silver’s Reinforcement Learning course (UCL)

YOU DID IT!

If you’ve made it this far, that is all the reward we could hope for.

We hope you enjoyed the series as an introduction to machine learning. 

We’ve compiled some of our favorite ML resources in the Appendix if you’re 

ready to see how deep this rabbit hole goes.

Please don’t hesitate to reach out with thoughts, questions, feedback, or 

your favorite GIFs!

Until next time,

Vishal and Samer
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Closing thoughts:
There is a fundamental question that inspired this series, and we'd like to pose it to you as well.

What is our objective function, as humans? How do we define the reward that we maximize in 

our real lives? Beyond base pleasure and pain, our definition of reward also tends to include 

messy things like right and wrong, fulfillment, love, spirituality, and purpose.

There has been an intellectual field dedicated to the question of what our objective functions 

are or should be since ancient times, and it’s called moral philosophy. The central question 

of moral philosophy is: what ought we do? How should we live? Which actions are right or 

wrong? The answer is, quite clearly: it depends on your values.

As we create more and more advanced AI, it will start to depart from the realm of toy 

problems like Atari games, where “reward” is cleanly defined by how many points are won 

in the game,  and exist more and more in the real world. Autonomous vehicles, for example, 

have to make decisions with a somewhat more complex definition of reward. At first, reward 

might be tied to something like “getting safely to the destination". But if forced to choose 

between staying the course and hitting five pedestrians or swerving and hitting one, should 

the vehicle swerve? What if the one pedestrian is a child, or a gunman on the loose, or the 

next Einstein? How does that change the decision, and why? What if swerving also destroys 

a piece of valuable art? Suddenly we have a much more complex problem when we try to 

define the objective function, and the answers are not as simple.

In this series, we explored why it’s difficult to specify explicitly to a computer what a cat looks 

like - if asked how we know ourselves, the answer is, most simply, “intuition” - but we’ve 

explored machine vision approaches to teaching the machine to learn this intuition by itself. 

Similarly, in the domain of machine morality, it might be difficult to specify exactly how to 

evaluate the rightness or wrongness of one action vs. another, but perhaps it is possible for a 

machine to learn these values in some way. This is called the values learning problem, and it 

may be one of the most important technical problems humans will ever have to solve.

For more on this topic, see this synoptic post on the Risks of Artificial Intelligence. And as you 

go forth into the world of making machine smarter and smarter, we'd encourage you to keep 

in mind that AI progress is a double-edged sword, of particular keenness on both sides.
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Appendix: The Best Machine Learning 
Resources

A compendium of resources for crafting a curriculum on artificial intelligence, machine 
learning, and deep learning.

This article is an addendum to the series Machine Learning for Humans           , a guide 
for getting up-to-speed on machine learning concepts in 2-3 hours.

General advice on crafting a curriculum
Going to school for a formal degree program for isn’t always possible or desirable. For 
those considering an autodidactic alternative, this is for you.

1. Build foundations, and then specialize in areas of interest.
You can’t go deeply into every machine learning topic. There’s too much to learn, 
and the field is advancing rapidly. Master foundational concepts and then focus on 
projects in a specific domain of interest — whether it’s natural language understanding, 
computer vision, deep reinforcement learning, robotics, or whatever else.

2. Design your curriculum around topics that personally excite you.
Motivation is far more important than micro-optimizing a learning strategy for some 
long-term academic or career goal. If you’re having fun, you’ll make fast progress. If 
you’re trying to force yourself forward, you’ll slow down.
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Foundations

Programming
Syntax and basic concepts: Google’s Python Class, Learn Python the Hard Way.
Practice: Coderbyte, Codewars, HackerRank.

Linear algebra
Deep Learning Book, Chapter 2: Linear Algebra. A quick review of the linear algebra 
concepts relevant to machine learning.
A First Course in Linear Model Theory by Nalini Ravishanker and Dipak Dey. Textbook 
introducing linear algebra in a statistical context.

Probability & statistics
MIT 18.05, Introduction to Probability and Statistics, taught by Jeremy Orloff and 
Jonathan Bloom. Provides intuition for probabilistic reasoning & statistical inference, 
which is invaluable for understanding how machines think, plan, and make decisions.
All of Statistics: A Concise Course in Statistical Inference, by Larry Wasserman. 
Introductory text on statistics.

Calculus
Khan Academy: Differential Calculus. Or, any introductory calculus course or textbook.
Stanford CS231n: Derivatives, Backpropagation, and Vectorization, prepared by Justin Johnson.

Machine learning
Courses
Andrew Ng’s Machine Learning course on Coursera (or, for more rigor, Stanford CS229).
Machine learning bootcamps: Galvanize (full-time, 3 months, $$$$), Thinkful (flexible 
schedule, 6 months, $$).

Textbook
An Introduction to Statistical Learning by Gareth James et al. Excellent reference for 
essential machine learning concepts, available free online.
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Deep learning
Courses
Deeplearning.ai, Andrew Ng’s introductory deep learning course.
CS231n: Convolutional Neural Networks for Visual Recognition, Stanford’s deep 
learning course. Helpful for building foundations, with engaging lectures and 
illustrative problem sets.

Projects
Fast.ai, a fun and hands-on project-based course. Projects include classifying images of 
dogs vs. cats and generating Nietzschean writing.
MNIST handwritten digit classification with TensorFlow. Classify handwritten digits with 
>99% accuracy in 3 hours with this tutorial by Google.
Try your hand at a Kaggle competition. Implement a deep learning paper that you 
found interesting, using other versions on GitHub as reference material.

Reading
Deep Learning Book, a.k.a. the Bible of Deep Learning, authored by Ian Goodfellow, 
Yoshua Bengio, and Aaron Courville.
Neural Networks and Deep Learning, a clear and accessible online deep learning text 
by Michael Nielsen. Ends with commentary on reaching human-level intelligence.
Deep Learning Papers Reading Roadmap, a compilation of key papers organized by 
chronology and research area.

Reinforcement learning
Courses
John Schulman’s CS 294: Deep Reinforcement Learning at Berkeley.
David Silver’s Reinforcement Learning course at University College London.
Deep RL Bootcamp, organized by OpenAI and UC Berkeley. Applications are currently 
closed, but it’s worth keeping an eye out for future sessions.

Projects
Andrej Karpathy’s Pong from Pixels. Implement a Pong-playing agent from scratch in 
130 lines of code.
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Arthur Juliani’s Simple Reinforcement Learning with Tensorflow series. Implement 
Q-learning, policy-learning, actor-critic methods, and strategies for exploration using 
TensorFlow.
See OpenAI’s requests for research for more project ideas.

Reading
Richard Sutton’s book, Reinforcement Learning: An Introduction.

Artificial intelligence
Artificial Intelligence: A Modern Approach by Stuart Russell and Peter Norvig.
Sebastian Thrun’s Udacity course, Intro to Artificial Intelligence.
Fellowships: Insight AI Fellows Program, Google Brain Residency Program

Artificial intelligence safety
For the short version, read: (1) Johannes Heidecke’s Risks of Artificial Intelligence, (2) 
OpenAI and Google Brain’s collaboration on Concrete Problems in AI Safety, and (3) 
Wait But Why’s article on the AI Revolution.
For the longer version, see Nick Bostrom’s Superintelligence.
Check out the research published by the Machine Intelligence Research Institute (MIRI) 
and Future of Humanity Institute (FHI) on AI safety.
Keep up-to-date with /r/ControlProblem on Reddit.

Newsletters
Import AI, weekly AI newsletter covering the latest developments in the industry. 
Prepared by Jack Clark of OpenAI.
Machine Learnings, prepared by Sam DeBrule. Frequent guest appearances from 
experts in the field.
Nathan.ai, covering recent news and commenting on AI/ML from a venture capital 
perspective.
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Advice from others
“What is the best way to learn machine learning without taking any online courses? — 
answered by Eric Jang, Google Brain
What are the best ways to pick up deep learning skills as an engineer?" - answered by 
Greg Brockman, CTO of OpenAI
A16z's AI Playbook, a more code-based introduction to AI
AI safety syllabus, designed by 80,000 Hours

“You take the blue pill, the story ends. You wake up in your bed and believe whatever you want to believe. You take the red pill, 
you stay in Wonderland, and I show you how deep the rabbit hole goes.” — Morpheus

On Twitter? So are we. Feel free to keep in touch — Vishal and Samer
Contact: ml4humans@gmail.com
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