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1. Data Analysis as Art

Data analysis is hard, and part of the problem is that few
people can explain how to do it. It’s not that there aren’t
any people doing data analysis on a regular basis. It’s that
the people who are really good at it have yet to enlighten us
about the thought process that goes on in their heads.

Imagine you were to ask a songwriter how she writes her
songs. There are many tools upon which she can draw. We
have a general understanding of how a good song should
be structured: how long it should be, how many verses,
maybe there’s a verse followed by a chorus, etc. In other
words, there’s an abstract framework for songs in general.
Similarly, we have music theory that tells us that certain
combinations of notes and chords work well together and
other combinations don’t sound good. As good as these
tools might be, ultimately, knowledge of song structure and
music theory alone doesn’t make for a good song. Some-
thing else is needed.

In Donald Knuth’s legendary 1974 essayComputer Program-
ming as an Art1, Knuth talks about the difference between art
and science. In that essay, hewas trying to get across the idea
that although computer programming involved complex
machines and very technical knowledge, the act of writing a
computer program had an artistic component. In this essay,
he says that

Science is knowledge which we understand so
well that we can teach it to a computer.

1http://www.paulgraham.com/knuth.html

http://www.paulgraham.com/knuth.html
http://www.paulgraham.com/knuth.html
http://www.paulgraham.com/knuth.html
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Everything else is art.

At some point, the songwriter must inject a creative spark
into the process to bring all the songwriting tools together
to make something that people want to listen to. This is a
key part of the art of songwriting. That creative spark is
difficult to describe, much less write down, but it’s clearly
essential to writing good songs. If it weren’t, then we’d have
computer programs regularly writing hit songs. For better
or for worse, that hasn’t happened yet.

Much like songwriting (and computer programming, for
that matter), it’s important to realize that data analysis is an
art. It is not something yet that we can teach to a computer.
Data analysts have many tools at their disposal, from linear
regression to classification trees and even deep learning,
and these tools have all been carefully taught to computers.
But ultimately, a data analyst must find a way to assemble
all of the tools and apply them to data to answer a relevant
question—a question of interest to people.

Unfortunately, the process of data analysis is not one that
we have been able to write down effectively. It’s true that
there are many statistics textbooks out there, many lining
our own shelves. But in our opinion, none of these really
addresses the core problems involved in conducting real-
world data analyses. In 1991, Daryl Pregibon, a promi-
nent statistician previously of AT&T Research and now of
Google, said in reference to the process of data analysis2

that “statisticians have a process that they espouse but do
not fully understand”.

Describing data analysis presents a difficult conundrum.
On the one hand, developing a useful framework involves
characterizing the elements of a data analysis using abstract

2http://www.nap.edu/catalog/1910/the-future-of-statistical-software-
proceedings-of-a-forum

http://www.nap.edu/catalog/1910/the-future-of-statistical-software-proceedings-of-a-forum
http://www.nap.edu/catalog/1910/the-future-of-statistical-software-proceedings-of-a-forum
http://www.nap.edu/catalog/1910/the-future-of-statistical-software-proceedings-of-a-forum
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language in order to find the commonalities across different
kinds of analyses. Sometimes, this language is the language
of mathematics. On the other hand, it is often the very
details of an analysis that makes each one so difficult and
yet interesting. How can one effectively generalize across
many different data analyses, each of which has important
unique aspects?

What we have set out to do in this book is to write down
the process of data analysis. What we describe is not a
specific “formula” for data analysis—something like “ap-
ply this method and then run that test”— but rather is a
general process that can be applied in a variety of situ-
ations. Through our extensive experience both managing
data analysts and conducting our own data analyses, we
have carefully observedwhat produces coherent results and
what fails to produce useful insights into data. Our goal is to
write down what we have learned in the hopes that others
may find it useful.



2. Epicycles of Analysis

To the uninitiated, a data analysis may appear to follow a
linear, one-step-after-the-other process which at the end,
arrives at a nicely packaged and coherent result. In reality,
data analysis is a highly iterative and non-linear process,
better reflected by a series of epicycles (see Figure), in which
information is learned at each step, which then informs
whether (and how) to refine, and redo, the step that was
just performed, or whether (and how) to proceed to the next
step.

An epicycle is a small circle whose center moves around
the circumference of a larger circle. In data analysis, the
iterative process that is applied to all steps of the data
analysis can be conceived of as an epicycle that is repeated
for each step along the circumference of the entire data
analysis process. Some data analyses appear to be fixed and
linear, such as algorithms embedded into various software
platforms, including apps. However, these algorithms are
final data analysis products that have emerged from the very
non-linear work of developing and refining a data analysis
so that it can be “algorithmized.”
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Epicycles of Analysis

2.1 Setting the Scene

Before diving into the “epicycle of analysis,” it’s helpful
to pause and consider what we mean by a “data analy-
sis.” Although many of the concepts we will discuss in this
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book are applicable to conducting a study, the framework
and concepts in this, and subsequent, chapters are tailored
specifically to conducting a data analysis. While a study in-
cludes developing and executing a plan for collecting data, a
data analysis presumes the data have already been collected.
More specifically, a study includes the development of a
hypothesis or question, the designing of the data collection
process (or study protocol), the collection of the data, and
the analysis and interpretation of the data. Because a data
analysis presumes that the data have already been collected,
it includes development and refinement of a question and
the process of analyzing and interpreting the data. It is
important to note that although a data analysis is often
performed without conducting a study, it may also be per-
formed as a component of a study.

2.2 Epicycle of Analysis

There are 5 core activities of data analysis:

1. Stating and refining the question
2. Exploring the data
3. Building formal statistical models
4. Interpreting the results
5. Communicating the results

These 5 activities can occur at different time scales: for
example, you might go through all 5 in the course of a day,
but also dealwith each, for a large project, over the course of
manymonths. Before discussing these core activities, which
will occur in later chapters, it will be important to first
understand the overall framework used to approach each
of these activities.
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Although there are many different types of activities that
you might engage in while doing data analysis, every aspect
of the entire process can be approached through an iterative
process that we call the “epicycle of data analysis”. More
specifically, for each of the five core activities, it is critical
that you engage in the following steps:

1. Setting Expectations,
2. Collecting information (data), comparing the data to

your expectations, and if the expectations don’tmatch,
3. Revising your expectations or fixing the data so your

data and your expectations match.

Iterating through this 3-step process is what we call the
“epicycle of data analysis.” As you go through every stage
of an analysis, you will need to go through the epicycle to
continuously refine your question, your exploratory data
analysis, your formal models, your interpretation, and your
communication.

The repeated cycling through each of these five core activi-
ties that is done to complete a data analysis forms the larger
circle of data analysis (See Figure). In this chapterwe go into
detail about what this 3-step epicyclic process is and give
examples of how you can apply it to your data analysis.
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Epicycles of Analysis

2.3 Setting Expectations

Developing expectations is the process of deliberately think-
ing about what you expect before you do anything, such
as inspect your data, perform a procedure, or enter a com-
mand. For experienceddata analysts, in some circumstances,
developing expectations may be an automatic, almost sub-
conscious process, but it’s an important activity to cultivate
and be deliberate about.

For example, you may be going out to dinner with friends
at a cash-only establishment and need to stop by the ATM
to withdraw money before meeting up. To make a decision
about the amount of money you’re going to withdraw, you
have to have developed some expectation of the cost of
dinner. This may be an automatic expectation because you
dine at this establishment regularly so you know what the
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typical cost of ameal is there, whichwould be an example of
a priori knowledge. Another example of a priori knowledge
would be knowing what a typical meal costs at a restaurant
in your city, or knowing what a meal at the most expensive
restaurants in your city costs. Using that information, you
could perhaps place an upper and lower bound on how
much the meal will cost.

You may have also sought out external information to de-
velop your expectations, which could include asking your
friends who will be joining you or who have eaten at the
restaurant before and/or Googling the restaurant to find
general cost information online or amenuwith prices. This
same process, in which you use any a priori information
you have and/or external sources to determine what you
expect when you inspect your data or execute an analysis
procedure, applies to each core activity of the data analysis
process.

2.4 Collecting Information

This step entails collecting information about your question
or your data. For your question, you collect information by
performing a literature search or asking experts in order
to ensure that your question is a good one. In the next
chapter, we will discuss characteristics of a good question.
For your data, after you have some expectations about what
the result will bewhen you inspect your data or perform the
analysis procedure, you then perform the operation. The
results of that operation are the data you need to collect, and
then you determine if the data you collected matches your
expectations. To extend the restaurant metaphor, when you
go to the restaurant, getting the check is collecting the data.
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2.5 Comparing Expectations to Data

Nowthat youhave data in hand (the check at the restaurant),
the next step is to compare your expectations to the data.
There are two possible outcomes: either your expectations
of the cost match the amount on the check, or they do not.
If your expectations and the data match, terrific, you can
move onto the next activity. If, on the other hand, your
expectations were a cost of 30 dollars, but the check was
40 dollars, your expectations and the data do not match.
There are two possible explanations for the discordance:
first, your expectations were wrong and need to be revised,
or second, the check was wrong and contains an error. You
review the check and find that you were charged for two
desserts instead of the one that you had, and conclude that
there is an error in the data, so ask for the check to be
corrected.

One key indicator of how well your data analysis is going is
how easy or difficult it is to match the data you collected to
your original expectations. You want to setup your expec-
tations and your data so that matching the two up is easy.
In the restaurant example, your expectation was $30 and
the data said the meal cost $40, so it’s easy to see that (a)
your expectation was off by $10 and that (b) the meal was
more expensive than you thought. When you come back
to this place, you might bring an extra $10. If our original
expectation was that the meal would be between $0 and
$1,000, then it’s true that our data fall into that range, but
it’s not clear how much more we’ve learned. For example,
would you change your behavior the next time you came
back? The expectation of a $30 meal is sometimes referred
to as a sharp hypothesis because it states something very
specific that can be verified with the data.
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2.6 Applying the Epicycle of Analysis
Process

Before we discuss a couple of examples, let’s review the
three steps to use for each core data analysis activity. These
are :

1. Setting expectations,
2. Collecting information (data), comparing the data to

your expectations, and if the expectations don’tmatch,
3. Revising your expectations or fixing the data so that

your expectations and the data match.

Example: Asthma prevalence in the U.S.

Let’s apply the “data analysis epicycle” to a very basic ex-
ample. Let’s say your initial question is to determine the
prevalence of asthma among adults, because your company
wants to understand how big the market might be for a
new asthma drug. You have a general question that has
been identified by your boss, but need to: (1) sharpen the
question, (2) explore the data, (3) build a statisticalmodel, (4)
interpret the results, and (5) communicate the results. We’ll
apply the “epicycle” to each of these five core activities.

For the first activity, refining the question, you would first
develop your expectations of the question, then collect in-
formation about the question and determine if the informa-
tion you collect matches your expectations, and if not, you
would revise the question. Your expectations are that the
answer to this question is unknown and that the question
is answerable. A literature and internet search, however, re-
veal that this question has been answered (and is continually
answered by theCenters forDiseaseControl (CDC)), so you
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reconsider the question since you can simply go to the CDC
website to get recent asthma prevalence data.

You inform your boss and initiate a conversation that re-
veals that any new drug that was developed would tar-
get those whose asthma was not controlled with currently
availablemedication, so you identify a better question,which
is “how many people in the United States have asthma that
is not currently controlled, and what are the demographic
predictors of uncontrolled asthma?” You repeat the process
of collecting information to determine if your question is
answerable and is a good one, and continue this process
until you are satisfied that you have refined your question
so that you have a good question that can be answered with
available data.

Let’s assume that you have identified a data source that can
be downloaded from a website and is a sample that repre-
sents theUnited States adult population, 18 years and older.
The next activity is exploratory data analysis, and you start
with the expectation that when you inspect your data that
there will be 10,123 rows (or records), each representing
an individual in the US as this is the information provided
in the documentation, or codebook, that comes with the
dataset. The codebook also tells you that there will be a
variable indicating the age of each individual in the dataset.

When you inspect the data, though, you notice that there are
only 4,803 rows, so return to the codebook to confirm that
your expectations are correct about the number of rows,
and when you confirm that your expectations are correct,
you return to the website where you downloaded the files
and discover that there were two files that contained the
data you needed, with one file containing 4,803 records and
the second file containing the remaining 5,320 records. You
download the second file and read it into your statistical
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software package and append the second file to the first.

Now you have the correct number of rows, so you move on
to determine if your expectations about the age of the pop-
ulation matches your expectations, which is that everyone
is 18 years or older. You summarize the age variable, so you
can view the minimum and maximum values and find that
all individuals are 18 years or older, which matches your
expectations. Although there is more that you would do to
inspect and explore your data, these two tasks are examples
of the approach to take. Ultimately, youwill use this data set
to estimate the prevalence of uncontrolled asthma among
adults in the US.

The third activity is building a statistical model, which is
needed in order to determine the demographic characteris-
tics that best predict that someone has uncontrolled asthma.
Statistical models serve to produce a precise formulation of
your question so that you can see exactly how you want to
use your data, whether it is to estimate a specific parameter
or to make a prediction. Statistical models also provide a
formal framework inwhich you can challenge your findings
and test your assumptions.

Now that you have estimated the prevalence of uncon-
trolled asthma among US adults and determined that age,
gender, race, body mass index, smoking status, and income
are the best predictors of uncontrolled asthma available,
you move to the fourth core activity, which is interpreting
the results. In reality, interpreting results happens along
withmodel building aswell as after you’ve finished building
your model, but conceptually they are distinct activities.

Let’s assume you’ve built your final model and so you are
movingon to interpreting the findings of yourmodel.When
you examine your final predictive model, initially your ex-
pectations arematched as age, AfricanAmerican/black race,
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body mass index, smoking status, and low income are all
positively associated with uncontrolled asthma.

However, you notice that female gender is inversely asso-
ciated with uncontrolled asthma, when your research and
discussions with experts indicate that among adults, female
gender should be positively associated with uncontrolled
asthma. This mismatch between expectations and results
leads you to pause and do some exploring to determine if
your results are indeed correct and you need to adjust your
expectations or if there is a problemwith your results rather
than your expectations. After some digging, you discover
that you had thought that the gender variable was coded 1
for female and 0 for male, but instead the codebook indi-
cates that the gender variablewas coded 1 formale and 0 for
female. So the interpretation of your results was incorrect,
not your expectations. Now that you understand what the
coding is for the gender variable, your interpretation of the
model results matches your expectations, so you can move
on to communicating your findings.

Lastly, you communicate your findings, and yes, the epicy-
cle applies to communication as well. For the purposes of
this example, let’s assume you’ve put together an informal
report that includes a brief summary of your findings. Your
expectation is that your report will communicate the infor-
mation your boss is interested in knowing. You meet with
your boss to review the findings and she asks two questions:
(1) how recently the data in the dataset were collected
and (2) how changing demographic patterns projected to
occur in the next 5-10 years would be expected to affect
the prevalence of uncontrolled asthma. Although it may be
disappointing that your report does not fully meet your
boss’s needs, getting feedback is a critical part of doing
a data analysis, and in fact, we would argue that a good
data analysis requires communication, feedback, and then
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actions in response to the feedback.

Although you know the answer about the years when the
data were collected, you realize you did not include this
information in your report, so you revise the report to
include it. You also realize that your boss’s question about
the effect of changing demographics on the prevalence of
uncontrolled asthma is a good one since your company
wants to predict the size of the market in the future, so you
now have a new data analysis to tackle. You should also feel
good that your data analysis brought additional questions
to the forefront, as this is one characteristic of a successful
data analysis.

In the next chapters, we will make extensive use of this
framework to discuss how each activity in the data analysis
process needs to be continuously iterated. While executing
the three stepsmay seem tedious at first, eventually, youwill
get the hang of it and the cycling of the process will occur
naturally and subconsciously. Indeed, we would argue that
most of the best data analysts don’t even realize they are
doing this!



3. Stating and Refining the
Question

Doing data analysis requires quite a bit of thinking and we
believe that when you’ve completed a good data analysis,
you’ve spent more time thinking than doing. The think-
ing begins before you even look at a dataset, and it’s well
worth devoting careful thought to your question. This point
cannot be over-emphasized as many of the “fatal” pitfalls
of a data analysis can be avoided by expending the mental
energy to get your question right. In this chapter, we will
discuss the characteristics of a good question, the types of
questions that can be asked, and how to apply the iterative
epicyclic process to stating and refining your question so
that when you start looking at data, you have a sharp,
answerable question.

3.1 Types of Questions

Before we delve into stating the question, it’s helpful to
considerwhat the different types of questions are. There are
six basic types of questions and much of the discussion that
follows comes from a paper1 published in Science by Roger
and Jeff Leek2. Understanding the type of question you are
asking may be the most fundamental step you can take to
ensure that, in the end, your interpretation of the results is
correct. The six types of questions are:

1http://www.sciencemag.org/content/347/6228/1314.short
2http://jtleek.com

http://www.sciencemag.org/content/347/6228/1314.short
http://jtleek.com/
http://www.sciencemag.org/content/347/6228/1314.short
http://jtleek.com/
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1. Descriptive
2. Exploratory
3. Inferential
4. Predictive
5. Causal
6. Mechanistic

And the type of question you are asking directly informs
how you interpret your results.

A descriptive question is one that seeks to summarize a
characteristic of a set of data. Examples includedetermining
the proportion of males, the mean number of servings of
fresh fruits and vegetables per day, or the frequency of
viral illnesses in a set of data collected from a group of
individuals. There is no interpretation of the result itself as
the result is a fact, an attribute of the set of data that you are
working with.

An exploratory question is one in which you analyze the
data to see if there are patterns, trends, or relationships be-
tween variables. These types of analyses are also called “hy-
pothesis-generating” analyses because rather than testing
a hypothesis as would be done with an inferential, causal,
or mechanistic question, you are looking for patterns that
would support proposing a hypothesis. If you had a general
thought that diet was linked somehow to viral illnesses, you
might explore this idea by examining relationships between
a range of dietary factors and viral illnesses. You find in your
exploratory analysis that individuals who ate a diet high
in certain foods had fewer viral illnesses than those whose
diet was not enriched for these foods, so you propose the
hypothesis that among adults, eating at least 5 servings a day
of fresh fruit and vegetables is associated with fewer viral
illnesses per year.
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An inferential question would be a restatement of this pro-
posed hypothesis as a question and would be answered by
analyzing a different set of data, which in this example, is
a representative sample of adults in the US. By analyzing
this different set of data you are both determining if the
association you observed in your exploratory analysis holds
in a different sample and whether it holds in a sample that
is representative of the adult US population, which would
suggest that the association is applicable to all adults in the
US. In other words, you will be able to infer what is true, on
average, for the adult population in theUS from the analysis
you perform on the representative sample.

A predictive questionwould be onewhere you askwhat types
of people will eat a diet high in fresh fruits and vegetables
during the next year. In this type of question you are less
interested in what causes someone to eat a certain diet, just
what predicts whether someone will eat this certain diet.
For example, higher income may be one of the final set of
predictors, and youmaynot know (or even care)why people
with higher incomes are more likely to eat a diet high in
fresh fruits and vegetables, but what is most important is
that income is a factor that predicts this behavior.

Although an inferential question might tell us that people
who eat a certain type of foods tend to have fewer viral
illnesses, the answer to this question does not tell us if
eating these foods causes a reduction in the number of viral
illnesses, which would be the case for a causal question. A
causal question asks about whether changing one factor
will change another factor, on average, in a population.
Sometimes the underlying design of the data collection, by
default, allows for the question that you ask to be causal. An
example of this would be data collected in the context of a
randomized trial, in which people were randomly assigned
to eat a diet high in fresh fruits and vegetables or one that
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was low in fresh fruits and vegetables. In other instances,
even if your data are not from a randomized trial, you
can take an analytic approach designed to answer a causal
question.

Finally, none of the questions described so far will lead to
an answer that will tell us, if the diet does, indeed, cause a
reduction in the number of viral illnesses, how the diet leads
to a reduction in the number of viral illnesses. A question
that asks how a diet high in fresh fruits and vegetables leads
to a reduction in the number of viral illnesses would be a
mechanistic question.

There are a couple of additional points about the types of
questions that are important. First, by necessity, many data
analyses answer multiple types of questions. For example,
if a data analysis aims to answer an inferential question, de-
scriptive and exploratory questions must also be answered
during the process of answering the inferential question. To
continue our example of diet and viral illnesses, you would
not jump straight to a statistical model of the relationship
between a diet high in fresh fruits and vegetables and the
number of viral illnesses without having determined the
frequency of this type of diet and viral illnesses and their
relationship to one another in this sample. A second point
is that the type of question you ask is determined in part
by the data available to you (unless you plan to conduct a
study and collect the data needed to do the analysis). For
example, you may want to ask a causal question about diet
and viral illnesses to know whether eating a diet high in
fresh fruits and vegetables causes a decrease in the number
of viral illnesses, and the best type of data to answer this
causal question is one in which people’s diets change from
one that is high in fresh fruits and vegetables to one that
is not, or vice versa. If this type of data set does not exist,
then the best you may be able to do is either apply causal
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analysis methods to observational data or instead answer
an inferential question about diet and viral illnesses.

3.2 Applying the Epicycle to Stating and
Refining Your Question

You can now use the information about the types of ques-
tions and characteristics of good questions as a guide to
refining your question. To accomplish this, you can iterate
through the 3 steps of:

1. Establishing your expectations about the question
2. Gathering information about your question
3. Determining if your expectations match the informa-

tion you gathered, and then refining your question (or
expectations) if your expectations did not match the
information you gathered

3.3 Characteristics of a Good Question

There are five key characteristics of a good question for a
data analysis, which range from the very basic characteristic
that the question should not have already been answered
to the more abstract characteristic that each of the possible
answers to the question should have a single interpretation
and be meaningful. We will discuss how to assess this in
greater detail below.

As a start, the question should be of interest to your au-
dience, the identity of which will depend on the context
and environment in which you are working with data. If
you are in academia, the audience may be your collabora-
tors, the scientific community, government regulators, your
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funders, and/or the public. If you are working at a start-
up, your audience is your boss, the company leadership,
and the investors. As an example, answering the question of
whether outdoor particulate matter pollution is associated
with developmental problems in childrenmay be of interest
to people involved in regulating air pollution, but may not
be of interest to a grocery store chain. On the other hand,
answering the question of whether sales of pepperoni are
higher when it is displayed next to the pizza sauce and pizza
crust or when it is displayed with the other packaged meats
would be of interest to a grocery store chain, but not to
people in other industries.

You should also check that the question has not already
been answered. With the recent explosion of data, the
growing amount of publicly available data, and the seem-
ingly endless scientific literature and other resources, it is
not uncommon to discover that your question of interest
has been answered already. Some research and discussion
with experts can help sort this out, and can also be helpful
because even if the specific question you have in mind
has not been answered, related questions may have been
answered and the answers to these related questions are
informative for deciding if or how you proceed with your
specific question.

The question should also stem from a plausible framework.
In other words, the question above about the relationship
between sales of pepperoni and its placement in the store is
a plausible one because shoppers buying pizza ingredients
are more likely than other shoppers to be interested in
pepperoni and may be more likely to buy it if they see it at
the same time that they are selecting the other pizza ingredi-
ents. A less plausible question would be whether pepperoni
sales correlate with yogurt sales, unless you had some prior
knowledge suggesting that these should be correlated.
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If you ask a question whose framework is not plausible,
you are likely to end up with an answer that’s difficult to
interpret or have confidence in. In the pepperoni-yogurt
question, if you do find they are correlated, many questions
are raised about the result itself: is it really correct?, why are
these things correlated- is there another explanation?, and
others. You can ensure that your question is grounded in a
plausible framework by using your own knowledge of the
subject area and doing a little research, which together can
go a longway in terms of helping you sort out whether your
question is grounded in a plausible framework.

The question, should also, of course, be answerable. Al-
though perhaps this doesn’t need stating, it’s worth pointing
out that some of the best questions aren’t answerable -
either because the data don’t exist or there is no means of
collecting the data because of lack of resources, feasibility,
or ethical problems. For example, it is quite plausible that
there are defects in the functioning of certain cells in the
brain that cause autism, but it not possible to perform brain
biopsies to collect live cells to study, whichwould be needed
to answer this question.

Specificity is also an important characteristic of a good
question. An example of a general question is: Is eating a
healthier diet better for you? Working towards specificity
will refine your question and directly inform what steps
to take when you start looking at data. A more specific
question emerges after asking yourself what you mean by
a “healthier” diet and when you say something is “better for
you”? The process of increasing the specificity should lead
to a final, refined question such as: “Does eating at least 5
servings per day of fresh fruits and vegetables lead to fewer
upper respiratory tract infections (colds)?” With this degree
of specificity, your plan of attack is much clearer and the
answer you will get at the end of the data analysis will be
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more interpretable as you will either recommend or not
recommend the specific action of eating at least 5 servings
of fresh fruit and vegetables per day as ameans of protecting
against upper respiratory tract infections.

3.4 Translating a Question into a Data
Problem

Another aspect to consider when you’re developing your
question is what will happen when you translate it into a
data problem. Every question must be operationalized as a
data analysis that leads to a result. Pausing to think through
what the results of the data analysis would look like and
how theymight be interpreted is important as it can prevent
you from wasting a lot of time embarking on an analysis
whose result is not interpretable. Although we will discuss
many examples of questions that lead to interpretable and
meaningful results throughout the book, it may be easiest
to start first by thinking about what sorts of questions don’t
lead to interpretable answers.

The typical type of question that does not meet this crite-
rion is a question that uses inappropriate data. For example,
your question may be whether taking a vitamin D supple-
ment is associated with fewer headaches, and you plan on
answering that question by using the number of times a
person took a pain reliever as a marker of the number of
headaches they had. You may find an association between
taking vitamin D supplements and taking less pain reliever
medication, but it won’t be clear what the interpretation
of this result is. In fact, it is possible that people who take
vitamin D supplements also tend to be less likely to take
other over-the-counter medications just because they are
“medication avoidant,” and not because they are actually
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getting fewer headaches. It may also be that they are us-
ing less pain reliever medication because they have less
joint pain, or other types of pain, but not fewer headaches.
Another interpretation, of course, is that they are indeed
having fewer headaches, but the problem is that you can’t
determine whether this is the correct interpretation or one
of the other interpretations is correct. In essence, the prob-
lem with this question is that for a single possible answer,
there aremultiple interpretations. This scenario ofmultiple
interpretations arises when at least one of the variables you
use (in this case, pain reliever use) is not a good measure of
the concept you are truly after (in this case, headaches). To
head off this problem, you will want to make sure that the
data available to answer your question provide reasonably
specific measures of the factors required to answer your
question.

A related problem that interferes with interpretation of
results is confounding. Confounding is a potential prob-
lem when your question asks about the relationship be-
tween factors, such as taking vitamin D and frequency of
headaches. A brief description of the concept of confound-
ing is that it is present when a factor that you were not
necessarily considering in your question is related to both
your exposure of interest (in the example, taking vitamin
D supplements) and your outcome of interest (taking pain
reliever medication). For example, income could be a con-
founder, because it may be related to both taking vitamin
D supplements and frequency of headaches, since people
with higher income may tend to be more likely to take a
supplement and less likely to have chronic health problems,
such as headaches. Generally, as long as you have income
data available to you, you will be able to adjust for this con-
founder and reduce the number of possible interpretations
of the answer to your question. As you refine your question,
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spend some time identifying the potential confounders and
thinking about whether your dataset includes information
about these potential confounders.

Another type of problem that can occurwhen inappropriate
data are used is that the result is not interpretable because
the underlying way in which the data were collected lead
to a biased result. For example, imagine that you are using
a dataset created from a survey of women who had had
children. The survey includes information about whether
their children had autism and whether they reported eating
sushi while pregnant, and you see an association between
report of eating sushi during pregnancy and having a child
with autism. However, because women who have had a
child with a health condition recall the exposures, such
as raw fish, that occurred during pregnancy differently
than those who have had healthy children, the observed
association between sushi exposure and autism may just
be the manifestation of a mother’s tendency to focus more
events during pregnancy when she has a child with a health
condition. This is an example of recall bias, but there are
many types of bias that can occur.

The other major bias to understand and consider when
refining your question is selection bias, which occurs when
the data your are analyzing were collected in such a way
to inflate the proportion of people who have both charac-
teristics above what exists in the general population. If a
study advertised that it was a study about autism and diet
during pregnancy, then it is quite possible that women who
both ate raw fish and had a child with autism would be
more likely to respond to the survey than those who had
one of these conditions or neither of these conditions. This
scenario would lead to a biased answer to your question
about mothers’ sushi intakes during pregnancy and risk of
autism in their children. A good rule of thumb is that if
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you are examining relationships between two factors, bias
may be a problem if you are more (or less) likely to observe
individualswith both factors because of how the population
was selected, or how a person might recall the past when
responding to a survey. Therewill bemore discussion about
bias in subsequent chapters on (Inference: A Primer and
Interpreting Your Results), but the best time to consider its
effects on your data analysis is when you are identifying the
question you will answer and thinking about how you are
going to answer the question with the data available to you.

3.5 Case Study

Joe works for a company that makes a variety of fitness
tracking devices and apps and the name of the company
is Fit on Fleek. Fit on Fleek’s goal is, like many tech start-
ups, to use the data they collect from users of their devices
to do targeted marketing of various products. The product
that they would like to market is a new one that they have
just developed and not yet started selling, which is a sleep
tracker and app that tracks various phases of sleep, such as
REM sleep, and also provides advice for improving sleep.
The sleep tracker is called Sleep on Fleek.

Joe’s boss asks him to analyze the data that the company
has on its users of their health tracking devices and apps to
identify users for targeted Sleep on Fleek ads. Fit on Fleek
has the following data from each of their customers: basic
demographic information, number of steps walked per day,
number of flights of stairs climbed per day, sedentary awake
hours per day, hours of alertness per day, hours of drowsi-
ness per day, and hours slept per day (but not more detailed
information about sleep that the sleep tracker would track).

Although Joe has an objective in mind, gleaned from a
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discussion with his boss, and he also knows what types of
data are available in the Fit on Fleek database, he does not
yet have a question. This scenario, in which Joe is given an
objective, but not a question, is common, so Joe’s first task
is to translate the objective into a question, and this will
take some back-and-forth communication with his boss.
The approach to informal communications that take place
during the process of the data analysis project, is covered
in detail in the Communication chapter. After a few dis-
cussions, Joe settles on the following question: “Which Fit
on Fleek users don’t get enough sleep?” He and his boss
agree that the customers who would be most likely to be
interested in purchasing the Sleep on Fleek device and app
are those who appear to have problems with sleep, and the
easiest problem to track and probably the most common
problem is not getting enough sleep.

You might think that since Joe now has a question, that
he should move to download the data and start doing ex-
ploratory analyses, but there is a bit of work Joe still has to
do to refine the question. The two main tasks Joe needs to
tackle are: (1) to think through how his question does, or
does not, meet the characteristics of a good question and
(2) to determine what type of question he is asking so that
he has a good understanding of what kinds of conclusions
can (and cannot) be drawn when he has finished the data
analysis.

Joe reviews the characteristics of a good question and his
expectations are that his question has all of these charac-
teristics: -of interest -not already answered -grounded in a
plausible framework -answerable -specific

The answer that he will get at the end of his analysis (when
he translates his question into a data problem) should also
be interpretable.
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He then thinks through what he knows about the question
and in his judgment, the question is of interest as his boss
expressed interest.

He also knows that the question could not have been an-
swered already since his boss indicated that it had not and
a review of the company’s previous data analyses reveals no
previous analysis designed to answer the question.

Next he assesses whether the question is grounded in a
plausible framework. The question, “Which Fit on Fleek
users don’t get enough sleep?”, seems to be grounded in
plausibility as it makes sense that people who get too little
sleep would be interested in trying to improve their sleep
by tracking it. However, Joe wonders whether the duration
of sleep is the best marker for whether a person feels that
they are getting inadequate sleep. He knows some people
who regularly get little more than 5 hours of sleep a night
and they seem satisfied with their sleep. Joe reaches out to a
sleepmedicine specialist and learns that a better measure of
whether someone is affected by lack of sleep or poor quality
sleep is daytime drowsiness. It turns out that his initial
expectation that the question was grounded in a plausible
frameworkdidnotmatch the informationhe receivedwhen
he spokewith a content expert. So he revises his question so
that it matches his expectations of plausibility and the re-
vised question is: Which Fit on Fleek users have drowsiness
during the day?

Joe pauses to make sure that this question is, indeed, an-
swerablewith the data he has available to him, and confirms
that it is. He also pauses to think about the specificity of
the question. He believes that it is specific, but goes through
the exercise of discussing the question with colleagues to
gather information about the specificity of the question.
When he raises the idea of answering this question, his col-
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leagues ask him many questions about what various parts
of the questionmean: what is meant by “which users”? Does
this mean: What are the demographic characteristics of the
userswho have drowsiness?Or something else?What about
“drowsiness during the day”? Should this phrase mean any
drowsiness on any day? Or drowsiness lasting at least a
certain amount of time on at least a certain number of days?
The conversation with colleagues was very informative and
indicated that the questionwas not very specific. Joe revises
his question so that it is now specific: “Which demographic
and health characteristics identify users who aremost likely
to have chronic drowsiness, defined as at least one episode
of drowsiness at least every other day?”

Joe now moves on to thinking about what the possible
answers to his questions are, and whether they will be
interpretable. Joe identifies two possible outcomes of his
analysis: (1) there are no characteristics that identify people
whohave chronic daytimedrowsiness or (2) there are oneor
more characteristics that identify people with chronic day-
time drowsiness. These two possibilities are interpretable
and meaningful. For the first, Joe would conclude that tar-
geting ads for the Sleep on Fleek tracker to people who are
predicted to have chronic daytime drowsiness would not be
possible, and for the second, he’d conclude that targeting the
ad is possible, and he’d know which characteristic(s) to use
to select people for the targeted ads.

Now that Joe has a good question in hand, after iterat-
ing through the 3 steps of the epicycle as he considered
whether his question met each of the characteristics of a
good question, the next step is for him to figure out what
type of question he has. He goes through a thought process
similar to the process he used for each of the characteristics
above. He starts thinking that his question is an exploratory
one, but as he reviews the description and examples of
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an exploratory question, he realizes that although some
parts of the analysis he will do to answer the question
will be exploratory, ultimately his question is more than
exploratory because its answer will predict which users are
likely to have chronic daytime drowsiness, so his question
is a prediction question. Identifying the type of question
is very helpful because, along with a good question, he
now knows that he needs to use a prediction approach in
his analyses, in particular in the model-building phase (see
Formal Modeling chapter).

3.6 Concluding Thoughts

By now, you should be poised to apply the 3 steps of the
epicycle to stating and refining a question. If you are a sea-
soned data analyst, much of this process may be automatic,
so that you may not be entirely conscious of some parts of
the process that lead you to a good question. Until you ar-
rive at this point, this chapter can serve as a useful resource
to youwhen you’re facedwith the task of developing a good
question. In the next chapters, we will discuss what to do
with the data now that you have good question in hand.



4. Exploratory Data Analysis

Exploratory data analysis is the process of exploring your
data, and it typically includes examining the structure and
components of your dataset, the distributions of individ-
ual variables, and the relationships between two or more
variables. Themost heavily relied upon tool for exploratory
data analysis is visualizing data using a graphical repre-
sentation of the data. Data visualization is arguably the
most important tool for exploratory data analysis because
the information conveyed by graphical display can be very
quickly absorbed and because it is generally easy to recog-
nize patterns in a graphical display.

There are several goals of exploratory data analysis, which
are:

1. To determine if there are any problems with your
dataset.

2. To determinewhether the question you are asking can
be answered by the data that you have.

3. To develop a sketch of the answer to your question.

Your application of exploratory data analysis will be guided
by your question. The example question used in this chapter
is: “Do counties in the eastern United States have higher
ozone levels than counties in the western United States?” In
this instance, you will explore the data to determine if there
are problems with the dataset, and to determine if you can
answer your question with this dataset.
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To answer the question of course, you need ozone, county,
and US region data. The next step is to use exploratory
data analysis to begin to answer your question, which could
include displaying boxplots of ozone by region of theUS. At
the end of exploratory data analysis, you should have a good
sense of what the answer to your question is and be armed
with sufficient information to move onto the next steps of
data analysis.

It’s important to note that here, again, the concept of the
epicycle of analysis applies. You should have an expectation
of what your dataset will look like and whether your ques-
tion can be answered by the data you have. If the content
and structure of the dataset doesn’tmatch your expectation,
then youwill need to go back and figure out if your expecta-
tion was correct (but there was a problem with the data) or
alternatively, your expectationwas incorrect, so you cannot
use the dataset to answer the question and will need to find
another dataset.

You should also have some expectation of what the ozone
levels will be as well as whether one region’s ozone should
be higher (or lower) than another’s. As you move to step
3 of beginning to answer your question, you will again
apply the epicycle of analysis so that if, for example, the
ozone levels in the dataset are lower thanwhat you expected
from looking at previously published data, you will need to
pause and figure out if there is an issue with your data or
if your expectation was incorrect. Your expectation could
be incorrect, for example, if your source of information
for setting your expectation about ozone levels was data
collected from 20 years ago (when levels were likely higher)
or from only a single city in the U.S. We will go into more
detail with the case study below, but this should give you an
overview about the approach and goals of exploratory data
analysis.
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4.1 Exploratory Data Analysis Checklist: A
Case Study

In this section we will run through an informal “checklist”
of things to do when embarking on an exploratory data
analysis. As a running example I will use a dataset on hourly
ozone levels in the United States for the year 2014. The
elements of the checklist are

1. Formulate your question
2. Read in your data
3. Check the packaging
4. Look at the top and the bottom of your data
5. Check your “n”s
6. Validate with at least one external data source
7. Make a plot
8. Try the easy solution first
9. Follow up

Throughout this examplewewill depict an ongoing analysis
with R code and real data. Some of the examples and recom-
mendations here will be specific to the R statistical analysis
environment, butmost should be applicable to any software
system. Being fluent in R is not necessary for understanding
themain ideas of the example. Feel free to skip over the code
sections.

4.2 Formulate your question

Previously in this book, we have discussed the importance
of properly formulating a question. Formulating a question
can be a useful way to guide the exploratory data analysis
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process and to limit the exponential number of paths that
can be taken with any sizeable dataset. In particular, a sharp
question or hypothesis can serve as a dimension reduction
tool that can eliminate variables that are not immediately
relevant to the question.

For example, in this chapter we will be looking at an air
pollution dataset from the U.S. Environmental Protection
Agency (EPA). A general question one could as is

Are air pollution levels higher on the east coast
than on the west coast?

But a more specific question might be

Are hourly ozone levels on average higher in
New York City than they are in Los Angeles?

Note that both questions may be of interest, and neither is
right or wrong. But the first question requires looking at all
pollutants across the entire east and west coasts, while the
second question only requires looking at single pollutant in
two cities.

It’s usually a good idea to spend a few minutes to figure out
what is the question you’re really interested in, and narrow
it down to be as specific as possible (without becoming
uninteresting).

For this chapter, we will consider the following question:

Do counties in the eastern United States have
higher ozone levels than counties in the western
United States?
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As a side note, one of the most important questions you can
answer with an exploratory data analysis is “Do I have the
right data to answer this question?” Often this question is
difficult to answer at first, but can becomemore clear as we
sort through and look at the data.

4.3 Read in your data

The next task in any exploratory data analysis is to read in
some data. Sometimes the data will come in a very messy
format and you’ll need to do some cleaning. Other times,
someone else will have cleaned up that data for you so you’ll
be spared the pain of having to do the cleaning.

We won’t go through the pain of cleaning up a dataset here,
not because it’s not important, but rather because there’s
often not much generalizable knowledge to obtain from
going through it. Every dataset has its unique quirks and
so for now it’s probably best to not get bogged down in the
details.

Here we have a relatively clean dataset from the U.S. EPA
on hourly ozone measurements in the entire U.S. for the
year 2014. The data are available from the EPA’s Air Quality
Systemweb page1. I’ve simply downloaded the zip file from
the web site, unzipped the archive, and put the resulting
file in a directory called “data”. If you want to run this code
you’ll have to use the same directory structure.

The dataset is a comma-separated value (CSV) file, where
each row of the file contains one hourly measurement of
ozone at some location in the country.

NOTE: Running the code below may take a few minutes.
There are 7,147,884 rows in theCSV file. If it takes too long,

1http://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html

http://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html
http://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html
http://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html
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you can read in a subset by specifying a value for the n_max

argument to read_csv() that is greater than 0.

> library(readr)

> ozone <- read_csv("data/hourly_44201_2014.csv",

+ col_types = "ccccinnccccccncnncccccc")

The readr package byHadleyWickham is a nice package for
reading in flat files (like CSV files) very fast, or at least much
faster than R’s built-in functions. It makes some tradeoffs
to obtain that speed, so these functions are not always
appropriate, but they serve our purposes here.

The character string provided to the col_types argument
specifies the class of each column in the dataset. Each letter
represents the class of a column: “c” for character, “n” for
numeric”, and “i” for integer. No, I didn’t magically know
the classes of each column—I just looked quickly at the file
to see what the column classes were. If there are too many
columns, you can not specify col_types and read_csv() will
try to figure it out for you.

Just as a convenience for later, we can rewrite the names of
the columns to remove any spaces.

> names(ozone) <- make.names(names(ozone))

4.4 Check the Packaging

Have you ever gotten a present before the time when you
were allowed to open it? Sure, we all have. The problem
is that the present is wrapped, but you desperately want to
know what’s inside. What’s a person to do in those circum-
stances? Well, you can shake the box a bit, maybe knock it
with your knuckle to see if it makes a hollow sound, or even
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weigh it to see how heavy it is. This is how you should think
about your dataset before you start analyzing it for real.

Assuming you don’t get any warnings or errors when read-
ing in the dataset, you should now have an object in your
workspace named ozone. It’s usually a good idea to poke at
that object a little bit before we break open the wrapping
paper.

For example, you should check the number of rows

> nrow(ozone)

[1] 7147884

and columns.

> ncol(ozone)

[1] 23

Remember when we said there were 7,147,884 rows in the
file? How does that match up with what we’ve read in? This
dataset also has relatively few columns, so youmight be able
to check the original text file to see if the number of columns
printed out (23) here matches the number of columns you
see in the original file.

Another thing you can do in R is run str() on the dataset.
This is usually a safe operation in the sense that even with a
very large dataset, running str() shouldn’t take too long.
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> str(ozone)

Classes 'tbl_df', 'tbl' and 'data.frame': 7147884 obs. of 23 variab\

les:

$ State.Code : chr "01" "01" "01" "01" ...

$ County.Code : chr "003" "003" "003" "003" ...

$ Site.Num : chr "0010" "0010" "0010" "0010" ...

$ Parameter.Code : chr "44201" "44201" "44201" "44201" ...

$ POC : int 1 1 1 1 1 1 1 1 1 1 ...

$ Latitude : num 30.5 30.5 30.5 30.5 30.5 ...

$ Longitude : num -87.9 -87.9 -87.9 -87.9 -87.9 ...

$ Datum : chr "NAD83" "NAD83" "NAD83" "NAD83" ...

$ Parameter.Name : chr "Ozone" "Ozone" "Ozone" "Ozone" ...

$ Date.Local : chr "2014-03-01" "2014-03-01" "2014-03-01" \

"2014-03-01" ...

$ Time.Local : chr "01:00" "02:00" "03:00" "04:00" ...

$ Date.GMT : chr "2014-03-01" "2014-03-01" "2014-03-01" \

"2014-03-01" ...

$ Time.GMT : chr "07:00" "08:00" "09:00" "10:00" ...

$ Sample.Measurement : num 0.047 0.047 0.043 0.038 0.035 0.035 0.0\

34 0.037 0.044 0.046 ...

$ Units.of.Measure : chr "Parts per million" "Parts per million"\

"Parts per million" "Parts per million" ...

$ MDL : num 0.005 0.005 0.005 0.005 0.005 0.005 0.0\

05 0.005 0.005 0.005 ...

$ Uncertainty : num NA NA NA NA NA NA NA NA NA NA ...

$ Qualifier : chr "" "" "" "" ...

$ Method.Type : chr "FEM" "FEM" "FEM" "FEM" ...

$ Method.Name : chr "INSTRUMENTAL - ULTRA VIOLET" "INSTRUME\

NTAL - ULTRA VIOLET" "INSTRUMENTAL - ULTRA VIOLET" "INSTRUMENTAL - U\

LTRA VIOLET" ...

$ State.Name : chr "Alabama" "Alabama" "Alabama" "Alabama"\

...

$ County.Name : chr "Baldwin" "Baldwin" "Baldwin" "Baldwin"\

...

$ Date.of.Last.Change: chr "2014-06-30" "2014-06-30" "2014-06-30" \

"2014-06-30" ...

The output for str() duplicates some information that we
already have, like the number of rows and columns. More
importantly, you can examine the classes of each of the
columns tomake sure they are correctly specified (i.e. num-
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bers are numeric and strings are character, etc.). Because we
pre-specified all of the column classes in read_csv(), they all
should match up with what we specified.

Often, with just these simple maneuvers, you can identify
potential problems with the data before plunging in head
first into a complicated data analysis.

4.5 Look at the Top and the Bottom of your
Data

It’s often useful to look at the “beginning” and “end” of a
dataset right after you check the packaging. This lets you
know if the data were read in properly, things are properly
formatted, and that everything is there. If your data are time
series data, then make sure the dates at the beginning and
end of the dataset matchwhat you expect the beginning and
ending time period to be.

In R, you can peek at the top and bottom of the data with
the head() and tail() functions.

Here’s the top.

> head(ozone[, c(6:7, 10)])

Latitude Longitude Date.Local

1 30.498 -87.88141 2014-03-01

2 30.498 -87.88141 2014-03-01

3 30.498 -87.88141 2014-03-01

4 30.498 -87.88141 2014-03-01

5 30.498 -87.88141 2014-03-01

6 30.498 -87.88141 2014-03-01

For brevity I’ve only taken a few columns. And here’s the
bottom.
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> tail(ozone[, c(6:7, 10)])

Latitude Longitude Date.Local

7147879 18.17794 -65.91548 2014-09-30

7147880 18.17794 -65.91548 2014-09-30

7147881 18.17794 -65.91548 2014-09-30

7147882 18.17794 -65.91548 2014-09-30

7147883 18.17794 -65.91548 2014-09-30

7147884 18.17794 -65.91548 2014-09-30

The tail() function can be particularly useful because often
there will be some problem reading the end of a dataset
and if you don’t check that specifically you’d never know.
Sometimes there’s weird formatting at the end or some ex-
tra comment lines that someone decided to stick at the end.
This is particularly common with data that are exported
fromMicrosoft Excel spreadsheets.

Make sure to check all the columns and verify that all of
the data in each column looks the way it’s supposed to look.
This isn’t a foolproof approach, because we’re only looking
at a few rows, but it’s a decent start.

4.6 ABC: Always be Checking Your “n”s

In general, counting things is usually a good way to figure
out if anything is wrong or not. In the simplest case, if
you’re expecting there to be 1,000 observations and it turns
out there’s only 20, you know something must have gone
wrong somewhere. But there are other areas that you can
check depending on your application. To do this properly,
you need to identify some landmarks that can be used to
check against your data. For example, if you are collecting
data on people, such as in a survey or clinical trial, then
you should know howmany people there are in your study.
That’s something you should check in your dataset, tomake
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sure that you have data on all the people you thought you
would have data on.

In this example,wewill use the fact that the dataset purport-
edly contains hourly data for the entire country. These will be
our two landmarks for comparison.

Here, we have hourly ozone data that comes frommonitors
across the country. The monitors should be monitoring
continuously during the day, so all hours should be repre-
sented. We can take a look at the Time.Local variable to see
what time measurements are recorded as being taken.

> head(table(ozone$Time.Local))

00:00 00:01 01:00 01:02 02:00 02:03

288698 2 290871 2 283709 2

One thing we notice here is that while almost all measure-
ments in the dataset are recorded as being taken on the
hour, some are taken at slightly different times. Such a small
number of readings are taken at these off times that we
might notwant to care. But it does seemabit odd, so itmight
be worth a quick check.

We can take a look at which observations were measured at
time “00:01”.
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> library(dplyr)

> filter(ozone, Time.Local == "13:14") %>%

+ select(State.Name, County.Name, Date.Local,

+ Time.Local, Sample.Measurement)

# A tibble: 2 × 5

State.Name County.Name Date.Local Time.Local

<chr> <chr> <chr> <chr>

1 New York Franklin 2014-09-30 13:14

2 New York Franklin 2014-09-30 13:14

# ... with 1 more variables:

# Sample.Measurement <dbl>

Wecan see that it’s amonitor in FranklinCounty,NewYork
and that the measurements were taken on September 30,
2014. What if we just pulled all of the measurements taken
at this monitor on this date?

> filter(ozone, State.Code == "36"

+ & County.Code == "033"

+ & Date.Local == "2014-09-30") %>%

+ select(Date.Local, Time.Local,

+ Sample.Measurement) %>%

+ as.data.frame

Date.Local Time.Local Sample.Measurement

1 2014-09-30 00:01 0.011

2 2014-09-30 01:02 0.012

3 2014-09-30 02:03 0.012

4 2014-09-30 03:04 0.011

5 2014-09-30 04:05 0.011

6 2014-09-30 05:06 0.011

7 2014-09-30 06:07 0.010

8 2014-09-30 07:08 0.010

9 2014-09-30 08:09 0.010

10 2014-09-30 09:10 0.010

11 2014-09-30 10:11 0.010

12 2014-09-30 11:12 0.012

13 2014-09-30 12:13 0.011

14 2014-09-30 13:14 0.013

15 2014-09-30 14:15 0.016

16 2014-09-30 15:16 0.017

17 2014-09-30 16:17 0.017
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18 2014-09-30 17:18 0.015

19 2014-09-30 18:19 0.017

20 2014-09-30 19:20 0.014

21 2014-09-30 20:21 0.014

22 2014-09-30 21:22 0.011

23 2014-09-30 22:23 0.010

24 2014-09-30 23:24 0.010

25 2014-09-30 00:01 0.010

26 2014-09-30 01:02 0.011

27 2014-09-30 02:03 0.011

28 2014-09-30 03:04 0.010

29 2014-09-30 04:05 0.010

30 2014-09-30 05:06 0.010

31 2014-09-30 06:07 0.009

32 2014-09-30 07:08 0.008

33 2014-09-30 08:09 0.009

34 2014-09-30 09:10 0.009

35 2014-09-30 10:11 0.009

36 2014-09-30 11:12 0.011

37 2014-09-30 12:13 0.010

38 2014-09-30 13:14 0.012

39 2014-09-30 14:15 0.015

40 2014-09-30 15:16 0.016

41 2014-09-30 16:17 0.016

42 2014-09-30 17:18 0.014

43 2014-09-30 18:19 0.016

44 2014-09-30 19:20 0.013

45 2014-09-30 20:21 0.013

46 2014-09-30 21:22 0.010

47 2014-09-30 22:23 0.009

48 2014-09-30 23:24 0.009

Now we can see that this monitor just records its values at
odd times, rather than on the hour. It seems, from looking
at the previous output, that this is the only monitor in the
country that does this, so it’s probably not something we
should worry about.

Because the EPA monitors pollution across the country,
there should be a good representation of states. Perhaps we
should see exactly how many states are represented in this
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dataset.

> select(ozone, State.Name) %>% unique %>% nrow

[1] 52

So it seems the representation is a bit too good—there are
52 states in the dataset, but only 50 states in the U.S.!

We can take a look at the unique elements of the State.Name
variable to see what’s going on.

> unique(ozone$State.Name)

[1] "Alabama" "Alaska"

[3] "Arizona" "Arkansas"

[5] "California" "Colorado"

[7] "Connecticut" "Delaware"

[9] "District Of Columbia" "Florida"

[11] "Georgia" "Hawaii"

[13] "Idaho" "Illinois"

[15] "Indiana" "Iowa"

[17] "Kansas" "Kentucky"

[19] "Louisiana" "Maine"

[21] "Maryland" "Massachusetts"

[23] "Michigan" "Minnesota"

[25] "Mississippi" "Missouri"

[27] "Montana" "Nebraska"

[29] "Nevada" "New Hampshire"

[31] "New Jersey" "New Mexico"

[33] "New York" "North Carolina"

[35] "North Dakota" "Ohio"

[37] "Oklahoma" "Oregon"

[39] "Pennsylvania" "Rhode Island"

[41] "South Carolina" "South Dakota"

[43] "Tennessee" "Texas"

[45] "Utah" "Vermont"

[47] "Virginia" "Washington"

[49] "West Virginia" "Wisconsin"

[51] "Wyoming" "Puerto Rico"

Nowwecan see thatWashington,D.C. (District ofColumbia)
andPuertoRico are the “extra” states included in the dataset.
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Since they are clearly part of the U.S. (but not official states
of the union) that all seems okay.

This last bit of analysis made use of something we will
discuss in the next section: external data. We knew that
there are only 50 states in the U.S., so seeing 52 state names
was an immediate trigger that something might be off. In
this case, all was well, but validating your data with an
external data source can be very useful. Which brings us
to….

4.7 Validate With at Least One External
Data Source

Making sure your data matches something outside of the
dataset is very important. It allows you to ensure that the
measurements are roughly in line with what they should be
and it serves as a check onwhat other thingsmight bewrong
in your dataset. External validation can often be as simple
as checking your data against a single number, as we will do
here.

In the U.S. we have national ambient air quality standards,
and for ozone, the current standard2 set in 2008 is that the
“annual fourth-highest daily maximum 8-hr concentration,
averaged over 3 years” should not exceed 0.075 parts per
million (ppm). The exact details of how to calculate this are
not important for this analysis, but roughly speaking, the 8-
hour average concentration should not be too much higher
than 0.075 ppm (it can be higher because of the way the
standard is worded).

Let’s take a look at the hourly measurements of ozone.

2http://www.epa.gov/ttn/naaqs/standards/ozone/s_o3_history.html

http://www.epa.gov/ttn/naaqs/standards/ozone/s_o3_history.html
http://www.epa.gov/ttn/naaqs/standards/ozone/s_o3_history.html
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> summary(ozone$Sample.Measurement)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00000 0.02000 0.03200 0.03123 0.04200 0.34900

From the summary we can see that the maximum hourly
concentration is quite high (0.349 ppm) but that in general,
the bulk of the distribution is far below 0.075.

We can get a bit more detail on the distribution by looking
at deciles of the data.

> quantile(ozone$Sample.Measurement, seq(0, 1, 0.1))

0% 10% 20% 30% 40% 50% 60% 70%

0.000 0.010 0.018 0.023 0.028 0.032 0.036 0.040

80% 90% 100%

0.044 0.051 0.349

Knowing that the national standard for ozone is something
like 0.075, we can see from the data that

• The data are at least of the right order of magnitude
(i.e. the units are correct)

• The range of the distribution is roughly what we’d
expect, given the regulation around ambient pollution
levels

• Some hourly levels (less than 10%) are above 0.075
but this may be reasonable given the wording of the
standard and the averaging involved.

4.8 Make a Plot

Making a plot to visualize your data is a good way to
further your understanding of your question and your data.
Plotting can occur at different stages of a data analysis. For
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example, plotting may occur at the exploratory phase or
later on in the presentation/communication phase.

There are two key reasons for making a plot of your data.
They are creating expectations and checking deviations from
expectations.

At the early stages of analysis, you may be equipped with a
question/hypothesis, but you may have little sense of what
is going on in the data. You may have peeked at some of it
for sake of doing some sanity checks, but if your dataset is
big enough, it will be difficult to simply look at all the data.
So making some sort of plot, which serves as a summary,
will be a useful tool for setting expectations for what the data
should look like.

Once you have a good understanding of the data, a good
question/hypothesis, and a set of expectations for what
the data should say vis a vis your question, making a plot
can be a useful tool to see how well the data match your
expectations. Plots are particularly good at letting you see
deviations from what you might expect. Tables typically are
good at summarizing data by presenting things like means,
medians, or other statistics. Plots, however, can show you
those things, as well as show you things that are far from
the mean or median, so you can check to see if something is
supposed to be that far away. Often, what is obvious in a plot
can be hidden away in a table.

Here’s a simple boxplot3 of the ozone data, with one boxplot
for each state.

3https://en.wikipedia.org/wiki/Box_plot

https://en.wikipedia.org/wiki/Box_plot
https://en.wikipedia.org/wiki/Box_plot
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> par(las = 2, mar = c(10, 4, 2, 2), cex.axis = 0.8)

> boxplot(Sample.Measurement ~ State.Name, ozone, range = 0, ylab = \

"Ozone level (ppm)")

Boxplot of ozone values by state

From the plot, we can see that for most states the data are
within a pretty narrow range below 0.05 ppm. However,
for Puerto Rico, we see that the typical values are very low,
except for some extremely high values. Similarly, Georgia
and Hawaii appear to experience an occasional very high
value. These might be worth exploring further, depending
on your question.
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4.9 Try the Easy Solution First

Recall that our original question was

Do counties in the eastern United States have
higher ozone levels than counties in the western
United States?

What’s the simplest answer we could provide to this ques-
tion? For the moment, don’t worry about whether the an-
swer is correct, but the point is howcould youprovide prima
facie evidence for your hypothesis or question. You may
refute that evidence later with deeper analysis, but this is
the first pass. Importantly, if you do not find evidence of
a signal in the data using just a simple plot or analysis, then
often it is unlikely that youwill find something using amore
sophisticated analysis.

First, we need to define what we mean by “eastern” and
“western”. The simplest thing to do here is to simply divide
the country into east and west using a specific longitude
value. For now, we will use -100 as our cutoff. Any monitor
with longitude less than -100will be “west” and anymonitor
with longitude greater than or equal to -100 will be “east”.

> library(maps)

> map("state")

> abline(v = -100, lwd = 3)

> text(-120, 30, "West")

> text(-75, 30, "East")
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Map of East andWest Regions

Here we create a new variable called region that we use to
indicate whether a given measurement in the dataset was
recorded in the “east” or the “west”.

> ozone$region <- factor(ifelse(ozone$Longitude < -100, "west", "eas\

t"))

Now, we can make a simple summary of ozone levels in
the east and west of the U.S. to see where levels tend to be
higher.
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> group_by(ozone, region) %>%

+ summarize(mean = mean(Sample.Measurement, na.rm = TRUE),

+ median = median(Sample.Measurement, na.rm = TRUE\

))

# A tibble: 2 × 3

region mean median

<fctr> <dbl> <dbl>

1 east 0.02995250 0.030

2 west 0.03400735 0.035

Both the mean and the median ozone level are higher in the
western U.S. than in the eastern U.S., by about 0.004 ppm.

We can also make a boxplot of the ozone in the two regions
to see how they compare.

> boxplot(Sample.Measurement ~ region, ozone, range = 0)
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Boxplot of Ozone for East andWest Regions

We can see from the boxplots that the variability of ozone
in the east tends to be a lot higher than the variability in the
west.

Challenge Your Solution

The easy solution is nice because it is, well, easy, but you
should never allow those results to hold the day. You should
always be thinking of ways to challenge the results, espe-
cially if those results comport with your prior expectation.

Recall that previously we noticed that three states had some
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unusually high values of ozone. We don’t know if these
values are real or not (for now, let’s assume they are real), but
itmight be interesting to see if the same pattern of east/west
holds up ifwe remove these states that have unusual activity.

> filter(ozone, State.Name != "Puerto Rico"

+ & State.Name != "Georgia"

+ & State.Name != "Hawaii") %>%

+ group_by(region) %>%

+ summarize(mean = mean(Sample.Measurement, na.rm = TRUE),

+ median = median(Sample.Measurement, na.rm = TRUE\

))

# A tibble: 2 × 3

region mean median

<fctr> <dbl> <dbl>

1 east 0.03003692 0.030

2 west 0.03406880 0.035

Indeed, it seems the pattern is the same even with those 3
states removed.

4.10 Follow-up Questions

In this chapter we’ve presented some simple steps to take
when starting off on an exploratory analysis. The example
analysis conducted in this chapter was far from perfect, but
it got us thinking about the data and the question of interest.
It also gave us a number of things to follow up on in case we
continue to be interested in this question.

At this point it’s useful to consider a few follow-up ques-
tions.

1. Do you have the right data? Sometimes at the con-
clusion of an exploratory data analysis, the conclusion
is that the dataset is not really appropriate for this
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question. In this case, the dataset seemedperfectly fine
for answering the question of whether counties in the
eastern U.S. have higher levels in the western U.S.

2. Do you need other data?While the data seemed ad-
equate for answering the question posed, it’s worth
noting that the dataset only covered one year (2014).
It may be worth examining whether the east/west
pattern holds for other years, in which case we’d have
to go out and obtain other data.

3. Do you have the right question? In this case, it’s
not clear that the question we tried to answer has
immediate relevance, and the data didn’t really indi-
cate anything to increase the question’s relevance. For
example, it might have beenmore interesting to assess
which counties were in violation of the national am-
bient air quality standard, because determining this
could have regulatory implications. However, this is
a muchmore complicated calculation to do, requiring
data from at least 3 previous years.

The goal of exploratory data analysis is to get you thinking
about your data and reasoning about your question. At this
point, we can refine our question or collect new data, all in
an iterative process to get at the truth.



5. Using Models to Explore
Your Data

The objectives of this chapter are to describe what the
concept of a model is more generally, to explain what the
purpose of a model is with respect to a set of data, and
last, to describe the process by which a data analyst creates,
assesses, and refines a model. In a very general sense, a
model is something we construct to help us understand the
realworld. A commonexample is the use of an animalwhich
mimics a human disease to help us understand, and hope-
fully, prevent and/or treat the disease. The same concept
applies to a set of data–presumably you are using the data
to understand the real world.

In the world of politics a pollster has a dataset on a sample
of likely voters and the pollster’s job is to use this sam-
ple to predict the election outcome. The data analyst uses
the polling data to construct a model to predict what will
happen on Election Day. The process of building a model
involves imposing a specific structure on the data and cre-
ating a summary of the data. In the polling data example,
you may have thousands of observations, so the model is
a mathematical equation that reflects the shape or pattern
of the data, and the equation allows you to summarize the
thousands of observations with, for example, one number,
which might be the percentage of voters who will vote for
your candidate. Right now, these last concepts may be a bit
fuzzy, but they will become much clearer as you read on.

A statistical model serves two key purposes in a data anal-
ysis, which are to provide a quantitative summary of your
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data and to impose a specific structure on the population
from which the data were sampled. It’s sometimes helpful
to understand what a model is and why it can be useful
through the illustration of extreme examples. The trivial
“model” is simply nomodel at all.

Imagine youwanted to conduct a survey of 20 people to ask
them how much they’d be willing to spend on a product
you’re developing. What is the goal of this survey? Pre-
sumably, if you’re spending time and money developing a
new product, you believe that there is a large population
of people out there who are willing to buy this product.
However, it’s far too costly and complicated to ask everyone
in that population what they’d be willing to pay. So you take
a sample from that population to get a sense of what the
population would pay.

One of us (Roger) recently published a book titled R Pro-
gramming for Data Science1. Before the book was published,
interested readers could submit their name and email ad-
dress to the book’s web site to be notified about the books
publication. In addition, there was an option to specify how
much they’d be willing to pay for the book. Below is a ran-
dom sample of 20 responses from people who volunteered
this information.

25 20 15 5 30 7 5 10 12 40 30 30 10 25 10 20 10 10 25 5

Now suppose that someone asked you, “What do the data
say?” One thing you could do is simply hand over the data—
all 20 numbers. Since the dataset is not that big, it’s not like
this would be a huge burden. Ultimately, the answer to their
question is in that dataset, but having all the data isn’t a
summary of any sort. Having all the data is important, but

1https://leanpub.com/rprogramming

https://leanpub.com/rprogramming
https://leanpub.com/rprogramming
https://leanpub.com/rprogramming
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is often not very useful. This is because the trivial model
provides no reduction of the data.

The first key element of a statistical model is data reduction.
The basic idea is you want to take the original set of num-
bers consisting of your dataset and transform them into a
smaller set of numbers. If you originally started with 20
numbers, your model should produce a summary that is
fewer than 20 numbers. The process of data reduction typ-
ically ends up with a statistic. Generally speaking, a statistic
is any summary of the data. The sample mean, or average,
is a statistic. So is the median, the standard deviation, the
maximum, the minimum, and the range. Some statistics are
more or less useful than others but they are all summaries
of the data.

Perhaps the simplest data reduction you can produce is the
mean, or the simple arithmetic average, of the data, which
in this case is $17.2. Going from 20 numbers to 1 number
is about as much reduction as you can do in this case, so it
definitely satisfies the summary element of a model.

5.1 Models as Expectations

But a simple summary statistic, such as the mean of a set of
numbers, is not enough to formulate a model. A statistical
model must also impose some structure on the data. At its
core, a statistical model provides a description of how
the world works and how the data were generated. The
model is essentially an expectation of the relationships be-
tween various factors in the real world and in your dataset.
What makes a model a statistical model is that it allows for
some randomness in generating the data.
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Applying the normal model

Perhaps the most popular statistical model in the world is
the Normal model. This model says that the randomness in
a set of data can be explained by the Normal distribution,
or a bell-shaped curve. The Normal distribution is fully
specified by two parameters—the mean and the standard
deviation.

Take the data that we described in the previous section—
the amount of money 20 people were willing to pay for a
hypothetical new product. The hope is that these 20 people
are a representative sample of the entire population of
people who might purchase this new product. If that’s the
case, then the information contained in the dataset can tell
you something about everyone in the population.

To apply the Normal model to this dataset, we just need to
calculate the mean and standard deviation. In this case, the
mean is $17.2 and the standard deviation is $10.39. Given
those parameters, our expectation under theNormalmodel
is that the distribution of prices that people are willing to
pay looks something like this.
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Normal Model for Prices

According to themodel, about 68% of the populationwould
be willing to pay somewhere between $6.81 and $27.59 for
this new product.Whether that is useful information or not
depends on the specifics of the situation,whichwewill gloss
over for the moment.

You can use the statistical model to answer more complex
questions if you want. For example, suppose you wanted to
know “What proportion of the population would be willing
to pay more than $30 for this book?” Using the properties
of the Normal distribution (and a little computational help
from R), we can easily do this calculation.



Using Models to Explore Your Data 60

pnorm(30, mean = mean(x), sd = sd(x), lower.tail = FALSE)

[1] 0.1089893

So about 11% of the population would be willing to pay
more than $30 for the product. Again, whether this is useful
to you depends on your specific goals.

Note that in the picture above there is one crucial thing
that is missing—the data! That’s not exactly true, because
we used the data to draw the picture (to calculate the mean
and standard deviation of the Normal distribution), but
ultimately the data do not appear directly in the plot. In this
casewe are using the Normal distribution to tell us what
the population looks like, not what the data look like.

The key point here is that we used the Normal distribution
to setup the shape of the distribution that we expect the data
to follow. The Normal distribution is our expectation for
what the data should look like.

5.2 Comparing Model Expectations to
Reality

We may be very proud of developing our statistical model,
but ultimately its usefulness will depend on how closely it
mirrors the data we collect in the real world. How do we
know if our expectations match with reality?

Drawing a fake picture

To begin with we can make some pictures, like a histogram
of the data. But before we get to the data, let’s figure out
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what we expect to see from the data. If the population fol-
lowed roughly a Normal distribution, and the data were a
random sample from that population, then the distribution
estimated by the histogram should look like the theoretical
model provided by the Normal distribution.

In the picture below, I’ve simulated 20 data points from a
Normal distribution and overlaid the theoretical Normal
curve on top of the histogram.

Histogram of Simulated Normal Data

Notice how closely the histogram bars and the blue curve
match. This is what we want to see with the data. If we see
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this, then we might conclude that the Normal distribution
is a good statistical model for the data.

Simulating data from a hypothesized model, if possible, is a
good way to setup expectations before you look at the data.
Drawing a fake picture (even by hand, if you have to) can be
a very useful tool for initiating discussions about the model
and what we expect from reality.

For example, before we even look at the data, we might
suspect the Normal model may not provide a perfect rep-
resentation of the population. In particular, the Normal
distribution allows for negative values, but we don’t really
expect that people will say that they’d be willing to pay
negative dollars for a book.

So we have some evidence already that the Normal model
may not be a perfect model, but no model is perfect. The
question is does the statistical model provide a reasonable
approximation that can be useful in some way?

The real picture

Here is a histogram of the data from the sample of 20
respondents. On top of the histogram, I’ve overlaid the
Normal curve on top of the histogram of the 20 data points
of the amount people say they are willing to pay for the
book.
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Histogram of Price Survey Data

Whatwewould expect is that the histogram and the blue line
should roughly follow each other. How do the model and
reality compare?

At first glance, it looks like the histogram and the Normal
distribution don’t match very well. The histogram has a
large spike around $10, a feature that is not present with
the blue curve. Also, the Normal distribution allows for
negative values on the left-hand side of the plot, but there
are no data points in that region of the plot.

So far the data suggest that the Normal model isn’t really a
very good representation of the population, given the data
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that we sampled from the population. It seems that the 20
people surveyed have strong preference for paying a price
in the neighborhood of $10, while there are a few people
willing to pay more than that. These features of the data are
not well characterized by a Normal distribution.

5.3 Reacting to Data: Refining Our
Expectations

Okay, so the model and the data don’t match very well, as
was indicated by the histogram above. So what to do? Well,
we can either

1. Get a different model; or
2. Get different data

Or we could do both. What we do in response depends a
little on our beliefs about the model and our understanding
of the data collection process. If we felt strongly that the
population of prices people would be willing to pay should
follow aNormal distribution, thenwemight be less likely to
make major modifications to the model. Wemight examine
the data collection process to see if it perhaps led to some
bias in the data. However, if the data collection process is
sound, thenwemight be forced to re-examineourmodel for
the population and see what could be changed. In this case,
it’s likely that our model is inappropriate, especially given
that it’s difficult to imagine a valid data collection process
that might lead to negative values in the data (as theNormal
distribution allows).

To close the loop here, we will choose a different statistical
model to represent the population, the Gamma distribution.
This distribution has the feature that it only allows positive
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values, so it eliminates the problem we had with negative
values with the Normal distribution.

Now, we should go back to the top of our iteration and do
the following:

1. Develop expectations: Draw a fake picture—what do
we expect to see before looking at the data?

2. Compare our expectations to the data
3. Refine our expectations, given what the data show

For your reference, here is a histogramof the samedatawith
the Gamma distribution (estimated using the data) overlaid.
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Price Survey Data with Gamma Distribution

How do the data match your expectations now?

You might ask what difference does it make which model
I use to represent the population from which the data were
generated?Well, for starters it might affect the kinds of pre-
dictions that youmightmake using themodel. For example,
recall before that were interested in what proportion of the
population might be willing to pay at least $30 dollars for
the book. Our new model says that only about 7% of the
population would be willing to pay at least this amount (the
Normal model claimed 11% would pay $30 or more). So
different models can yield different predictions based on
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the same data, which may impact decisions made down the
road.

5.4 Examining Linear Relationships

It’s common to look at data and try to understand linear
relationships between variables of interest. The most com-
mon statistical technique to help with this task is linear
regression. We can apply the principles discussed above—
developing expectations, comparing our expectations to
data, refining our expectations—to the application of linear
regression as well.

For this example we’ll look at a simple air quality dataset
containing information about tropospheric ozone levels in
NewYork City in the year 1999 formonths ofMay through
1999. Here are the first few rows of the dataset.

ozone temp month

1 25.37262 55.33333 5

2 32.83333 57.66667 5

3 28.88667 56.66667 5

4 12.06854 56.66667 5

5 11.21920 63.66667 5

6 13.19110 60.00000 5

The data contain daily average levels of ozone (in parts
per billion [pbb]) and temperature (in degrees Fahrenheit).
One question of interest that might motivate the collection
of this dataset is “How is ambient temperature related to
ambient ozone levels in New York?”
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Expectations

After reading a little about ozone formation in the atmo-
sphere2, we know that the formation of ozone depends
critically on the presence of sunlight. Sunlight is also related
to temperature in the sense that on days where there is a
lot of sunlight, we would expect the average temperature
for that day to be higher. Cloudy days have both lower
temperatures on average and less ozone. So there’s reason
to believe that on days with higher temperatures we would
expect there to be higher ozone levels. This is an indirect
relationship—we are using temperature here as essentially
a proxy for the amount of sunlight.

The simplest model that we might formulate for character-
izing the relationship between temperature and ozone is a
linear model. This model says that as temperature increases,
the amount of ozone in the atmosphere increases linearly
with it. What do we expect this to look like?

We can simulate some data tomake a fake picture ofwhat the
relationship between ozone and temperature should look
like under a linearmodel. Here’s a simple linear relationship
along with the simulated data in a scatterplot.

2https://en.wikipedia.org/wiki/Tropospheric_ozone

https://en.wikipedia.org/wiki/Tropospheric_ozone
https://en.wikipedia.org/wiki/Tropospheric_ozone
https://en.wikipedia.org/wiki/Tropospheric_ozone
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Simulated Data with a Linear Model

Note that if you choose any point on the blue line, there
is roughly the same number of points above the line as
there are below the line (this is also referred to as unbiased
errors). Also, the points on the scatterplot appear to increase
linearly as youmove towards the right on the x-axis, even if
there is a quite a bit of noise/scatter along the line.

If we are right about our linear model, and that is the model
that characterizes the data and the relationship between
ozone and temperature, then roughly speaking, this is the
picture we should see when we plot the data.
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Comparing expectations to data

Here is the picture of the actual ozone and temperature data
in New York City for the year 1999. On top of the scatter-
plot of the data, we’ve plotted the fitted linear regression
line estimated using the data.

Linear Model for Ozone and Temperature

How does this picture compare to the picture that you were
expecting to see?

One thing is clear: There does appear to be an increasing
trend in ozone as temperature increases, as we hypothe-
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sized. However, there are a few deviations from the nice
fake picture that we made above. The points don’t appear
to be evenly balanced around the blue regression line.

If you draw a vertical line around a temperature of 85
degrees, you notice that most of the points are above the
line. Drawing a vertical line around 70 degrees shows that
most of the points are below the line. This implies that
at higher temperatures, our model is biased downward (it
underestimates ozone) and at moderate temperatures our
model is biased upwards. This isn’t a great feature–in this
situation we might prefer that our model is not biased
anywhere.

Our simple linear regression model appears to capture the
general increasing relationship between temperature and
ozone, but it appears to be biased in certain ranges of tem-
perature. It seems that there is room for improvement with
thismodel if wewant to better characterize the relationship
between temperature and ozone in this dataset.

Refining expectations

From the picture above, it appears that the relationship
between temperature and ozone may not be linear. Indeed,
the data points suggest that maybe the relationship is flat
up until about 70 degrees and then ozone levels increase
rapidly with temperature after that. This suggest a nonlinear
relationship between temperature and ozone.

The easiest way we can capture this revised expectation is
with a smoother, in this case, a loess smoother.
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Loess Smoother for Ozone and Temperature

This plot shows adifferent picture–the relationship is slowly
increasing up until about 75 degrees, and then sharply in-
creases afterwards. Around 90 degrees, there’s a suggestion
that the relationship levels off again.

Smoothers (like loess) are useful tools because they quickly
capture trends in a dataset without making any structural
assumptions about the data. Essentially, they are an auto-
mated or computerized way to sketch a curve on to some
data. However, smoothers rarely tell you anything about
the mechanism of the relationship and so may be limited
in that sense. In order to learn more about the relationship
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between temperature and ozone, we may need to resort to
a more detailed model than the simple linear model we had
before.

5.5 When DoWe Stop?

In the examples above, we completed one iteration of the
data analysis process. In some cases, a single iteration may
be sufficient, but inmost real-life cases, you’ll need to iterate
at least a few times. From the examples above, there are still
some things left to do:

• Price SurveyData: We ended the example by fitting a
Gamma distribution model. But how does that fit the
data?Whatwouldwe expect from the data if they truly
followed a Gamma distribution (we never made that
plot)? Is there a better way to capture that spike in the
distribution right around $10?

• Ozone and Temperature: The smoother suggested a
nonlinear relationship between temperature andozone,
but what is the reason for this? Is the nonlinearity
real or just a chance occurrence in the data? Is there
a known physical process that explains the dramatic
increase in ozone levels beyond a certain temperature
and can we model that process?

Ultimately, youmight be able to iterate over and over again.
Every answer will usually raise more questions and require
further digging into the data. When exactly do you stop the
process then? Statistical theory suggests a number of dif-
ferent approaches to determining when a statistical model
is “good enough” and fits the data well. This is not what we
will discuss here, but rather we will discuss a few high-level
criteria to determinewhen youmight consider stopping the
data analysis iteration.
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Are you out of data?

Iterative data analysis will eventually begin to raise ques-
tions that simply cannot be answered with the data at hand.
For example, in the ozone/temperature analysis, the mod-
eling suggested that there isn’t just a simple relationship
between the two variables, that it may be nonlinear. But
the data can’t explain precisely why such a nonlinear re-
lationship might exist (although they can suggest certain
hypotheses). Also, you may need to collect additional data
to determine whether what you observe is real or simply a
fluke or statistical accident. Either way, you need to go back
out into the world and collect new data. More data analysis
is unlikely to bring these answers.

Another situation in which you may find yourself seeking
out more data is when you’ve actually completed the data
analysis and come to satisfactory results, usually some in-
teresting finding. Then, it can be very important to try to
replicate whatever you’ve found using a different, possibly
independent, dataset. In the ozone/temperature example,
if we concluded that there were a nonlinear relationship
between temperature and ozone, our conclusion might be
mademore powerful if we could show that this relationship
were present in other cities besides New York. Such inde-
pendent confirmation can increase the strength of evidence
and can play a powerful role in decision-making.

Do you have enough evidence to make a decision?

Data analysis is often conducted in support of decision-
making, whether in business, academia, government, or
elsewhere, we often collect an analyze data to inform some
sort of decision. It’s important to realize that the analysis
that you perform to get yourself to the point where you
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can make a decision about something may be very different
from the analysis you perform to achieve other goals, such
as writing a report, publishing a paper, or putting out a
finished product.

That’s why it’s important to always keep inmind the purpose
of the data analysis as you go along because you may over-
or under-invest resources in the analysis if the analysis is
not attuned to the ultimate goal. The purpose of a data
analysis may change over time and there may in fact be
multiple parallel purposes. The question of whether you
have enough evidence depends on factors specific to the
application at hand and your personal situationwith respect
to costs and benefits. If you feel you do not have enough
evidence to make a decision, it may be because you are out
of data, or because you need to conduct more analysis.

Can you place your results in any larger context?

Another way to ask this question is “Do the results make
some sort of sense?” Often, you can answer this question
by searching available literature in your area or see if other
people inside or outside your organization have come to a
similar conclusion. If your analysis findings hew closely to
what others have found, that may be a good thing, but it’s
not the only desirable outcome. Findings that are at odds
with past results may lead down a path of new discovery. In
either case, it’s often difficult to come to the right answer
without further investigation.

You have to be a bit careful with how you answer this ques-
tion. Often, especially with very large and complex datasets,
it’s easy to come to a result that “makes sense” and conforms
to our understanding of how a given process shouldwork. In
this situation, it’s important to be hypercritical of our find-
ings and to challenge them as much as possible. In our ex-
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perience, when the data very closelymatch our expectation,
it can be a result of either mistakes or misunderstandings in
the analysis or in the data collection process. It is critical to
question every aspect of the analysis process to make sure
everything was done appropriately.

If your results do not make sense, or the data do not match
your expectation, then this is where things get interesting.
You may simply have done something incorrectly in the
analysis or the data collection. Chances are, that’s exactly
what happened. For every diamond in the rough, there are
99 pieces of coal. However, on the off-chance that you’ve
discovered something unusual that others have not yet seen,
you’ll need to (a) make sure that the analysis was done
properly and (b) replicate your findings in another dataset.
Surprising results are usually met with much scrutiny and
you’ll need to be prepared to rigorously defend your work.

Ultimately, if your analysis leads you to a place where you
can definitively answer the question “Do the results make
sense?” then regardless of how you answer that question,
you likely need to stop your analysis and carefully check
every part of it.

Are you out of time?

This criterion seems arbitrary but nevertheless plays a big
role in determining when to stop an analysis in practice.
A related question might be “Are you out of money?” Ul-
timately, there will be both a time budget and a mone-
tary budget that determines how many resources can be
committed to a given analysis. Being aware of what these
budgets are, even if you are not necessarily in control of
them, can be important to managing a data analysis. In
particular, you may need to argue for more resources and
to persuade others to given them to you. In such a situation,
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it’s useful to know when to stop the data analysis iteration
and preparewhatever results youmay have obtained to date
in order to present a coherent argument for continuation of
the analysis.

5.6 Summary

Model building, like the entire process of data analysis itself,
is an iterative process. Models are used to provide data
reduction and to give you some insight into the population
aboutwhich you are trying tomake inference. It’s important
to first set your expectations for a how a model should
characterize a dataset before you actually apply a model to
data. Then you can check to see how your model conforms
to your expectation. Often, there will be features of the
dataset that donot conform to yourmodel and youwill have
to either refine your model or examine the data collection
process.



6. Inference: A Primer

Inference is one of many possible goals in data analysis and
so it’s worth discussing what exactly is the act of making
inference. Recall previously we described one of the six
types of questions you can ask in a data analysis is an
inferential question. So what is inference?

In general, the goal of inference is to be able to make a
statement about something that is not observed, and ideally
to be able to characterize any uncertainty you have about
that statement. Inference is difficult because of the differ-
ence between what you are able to observe and what you
ultimately want to know.

6.1 Identify the population

The language of inference can change depending on the
application, but most commonly, we refer to the things we
cannot observe (but want to know about) as the population
or as features of the population and the data that we observe
as the sample. The goal is to use the sample to somehow
make a statement about the population. In order to do this,
we need to specify a few things.

Identifying the population is the most important task. If
you cannot coherently identify or describe the population,
then you cannot make an inference. Just stop. Once you’ve
figured out what the population is and what feature of the
population you want to make a statement about (e.g. the
mean), then you can later translate that into a more specific
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statement using a formal statistical model (covered later in
this book).

6.2 Describe the sampling process

How did the data make its way from the population to your
computer? Being able to describe this process is important
for determining whether the data are useful for making
inferences about features of the population. As an extreme
example, if you are interested in the average age of women
in a population, but your sampling process somehow is
designed so that it only produces data on men, then you
cannot use the data to make an inference about the average
age of women. Understanding the sampling process is key
to determining whether your sample is representative of
the population of interest. Note that if you have difficulty
describing the population, you will have difficulty describ-
ing the process of sampling data from the population. So
describing the sampling process hinges on your ability to
coherently describe the population.

6.3 Describe a model for the population

We need to have an abstract representation of how ele-
ments of the population are related to each other. Usually,
this comes in the form of a statistical model that we can
represent using mathematical notation. However, in more
complex situations, we may resort to algorithmic represen-
tations that cannot be written down neatly on paper (many
machine learning approaches have to be described thisway).
The simplest model might be a simple linear model, such as

y = β0 + β1x+ ε
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Here, x and y are features of the population and β0 and
β1 describe the relationship between those features (i.e. are
they positively or negatively associated?). The final element
ε is a catch-all that is intended to capture all of the factors
that contribute to the difference between the y andwhat we
expect y to be, which is β0+β1x. It is this last part that makes
the model a statistical model because we typically allow ε to
be random.

Another characteristic that we typically need to make an
assumption about is how different units in the population
interact with each other. Typically, without any additional
information, wewill assume that the units in the population
are independent, meaning that the measurements of one unit
do not provide any information about themeasurements on
another unit. At best, this assumption is approximately true,
but it can be a useful approximation. In some situations,
such as when studying things that are closely connected in
space or time, the assumption is clearly false, and we must
resort to special modeling approaches to account for the
lack of independence.

George Box, a statistician, once said that1 “all models are
wrong, but some are useful”. It’s likely that whatever model
you devise for describing the features of a population, it is
technically wrong. But you shouldn’t be fixated on develop-
ing a correctmodel; rather you should identify a model that
is useful to you and tells a story about the data and about the
underlying processes that you are trying to study.

6.4 A Quick Example

Consider this group of penguins below (because penguins
are awesome), eachwearing either a purple or turquoise hat.

1https://en.wikipedia.org/wiki/All_models_are_wrong
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There are a total of 10 penguins in this group.We’ll call them
the population.

Population of Penguins with Turquoise and Purple Hats

Now suppose you wanted to know howwhat proportion of
the populationof penguinswears turquoise hats. But there’s a
catch–you don’t have the time,money, or ability to take care
of 10 penguins. Who does? You can only afford to take care
of three penguins, so you randomly sample three of these 10
penguins.
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Sample of 3 Penguins from Population

The key point is that you never observe the full population
of penguins. Now what you end up with is your dataset,
which contains only three penguins.
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Dataset of Penguins

At this point an easy question to ask is “What proportion
of the penguins in my dataset are wearing turquoise hats?”.
From the picture above, it’s clear that 1/3 of the penguins
are wearing turquoise hats. We have no uncertainty about
that proportion because the data are sitting right in front
of us.

The hard question to ask is “Based on the data I have,
what proportion of the penguins in the original population
are wearing turquoise hats?” At this point, we just have
our sample of three penguins and do not observe the full
population. What can we do? We need to make an inference
about the population using the data we have on hand.

The three things that we need to do to make an inference
are:
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1. Define the population. Here, the population is the
original 10 penguins from which we sampled our
dataset of three penguins.

2. Describe the sampling process. We haven’t explic-
itly mentioned this, but suppose for now that our
“sampling process” consisted of taking the first three
penguins that walked up to us.

3. Describe amodel for thepopulation.Wewill assume
that the hats the penguins wear are independent of
each other, so the fact that one penguin has a purple
hat doesn’t influence whether another penguin has a
turquoise hat. Since we only want to estimate a simple
proportion of penguins with turquoise hats, we don’t
need to make any more complex assumptions about
how penguins relate to each other.

Given the three ingredients above, we might estimate the
proportion of penguins with turquoise hats to be 1/3. How
good of an estimate is this? Given that we know the truth
here–2/5of the penguins have turquoise hats in the population–
we might ask whether 1/3 is a reasonable estimate or not.
The answer to that question depends on a variety of factors
that will be discussed in the next section.

6.5 Factors Affecting the Quality of
Inference

The key factors affecting the quality of an inference you
might make relate to violations in our thinking about the
sampling process and the model for the population. Obvi-
ously, if we cannot coherently define the population, then
any “inference” that we make to the population will be
similarly vaguely defined.



Inference: A Primer 85

A violation of our understanding of how the sampling pro-
cess worked would result in our having collected data that
did not represent the population in the way that we thought
it would. This would affect our inference in that the infer-
ence we would make would apply not to the entire pop-
ulation, but to a specific selection of the population. This
phenomenon is sometimes referred to as selection bias
because the quantities that you estimate are biased toward
the selection of the population that you did sample.

A violation of the model that we posit for the population
could result in us estimating the wrong relationship be-
tween features of the population or underestimating the un-
certainty of our estimates. For example, if it’s true that pen-
guins can influence what color hats other penguins wear,
then that would violate the assumption of independence
between penguins. This would result in an increase in the
uncertainty of any estimates that wemake from the data. In
general, dependence between units in a population reduce
the “effective sample size” of your dataset because the units
you observe are not truly independent of each other and do
not represent independent bits of information.

A final reason for a difference between our estimate from
data and the truth in the population is samplingvariability.
Because we randomly sampled penguins from the popu-
lation, it’s likely that if we were to conduct the experi-
ment again and sample another three penguins, we would
get a different estimate of the number of penguins with
turquoise hats, simply due to random variation in the sam-
pling process. This would occur even if our description of
the sampling process were accurate and our model for the
population were perfect.

In most cases, differences between what we can estimate
with data and what the truth is in the population can be
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explained by a combination of all three factors. How big
a role each plays in a given problem can be difficult to
determine sometimes due to a lack of information, but it is
usually worth putting some thought into each one of these
factors and deciding which might be playing a dominant
role. That way, one may be able to correct the problem, for
example, in future studies or experiments.

6.6 Example: Apple Music Usage

On August 18, 2015, consumer market research firm Mu-
sicWatch released a study2 about a newmusic service launched
by Apple, Inc. called Apple Music. The service was a new
streaming music service designed to give users streaming
access to a large catalog of music for $9.99 per month.
However, there was a free trial period that lasted for 3
months. At the time there was much speculation over how
many users would ultimately continue to pay the $9.99 per
month once the free trial ended.

MusicWatch’s study claimed, among other things, that

Among people who had tried Apple Music, 48
percent reported they are not currently using
the service.

This would suggest that almost half of people who had
signed up for the free trial period of Apple Music were not
interested in using it further and would likely not pay for it
once the trial ended. If it were true, it would be a blow to
the newly launched service.

2http://www.businesswire.com/news/home/20150818005755/en#
.VddbR7Scy6F
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But how did MusicWatch arrive at its number? It claimed
to have surveyed 5,000 people in its study. Shortly before
the survey by MusicWatch was released, Apple claimed
that about 11 million people had signed up for their new
Apple Music service (because the service had just launched,
everyone who had signed up was in the free trial period).
Clearly, 5,000 people do not make up the entire population,
so we have but a small sample of users.

What is the target thatMusicWatchwas trying to answer? It
seems that they wanted to know the percentage of all people
who had signed up for Apple Music that were still using the
service. Because it would have been enormously expensive
to survey all 11 million people, they had to resort to a much
smaller sample of 5,000. Can theymake inference about the
entire population from the sample of 5,000?

Let’s consider the three ingredients for inference:

1. Population: We are interested in the behavior of the
entire Apple Music user base, which is approximately
11 million people, according to Apple.

2. Sampling process: It’s not clear from the press release
how the study was conducted and the data collected.
It’s likely this was a telephone survey and so people
were randomly selected to be called and asked about
their use of the service. Do you think this process led
to a sample of respondents that is representative of the
entire population of Apple Music users?

3. Model for the population: Given the relatively small
size of the sample relative to the entire population,
it’s likely that the individuals in the survey could be
thought of being independent of each other. In other
words, it’s unlikely that one respondent in the survey
could have influenced another respondent.
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If the sample is representative and the individuals are inde-
pendent, we could use the number 48% as an estimate of the
percentage in the population who no longer use the service.
The press release from MusicWatch did not indicate any
measure of uncertainty, so we don’t know how reliable the
number is.

Interestingly, soon after the MusicWatch survey was re-
leased, Apple released a statement to the publication The
Verge, stating that 79% of users who had signed up were
still using the service (i.e. only 21% had stopped using it,
as opposed to 48% reported by MusicWatch). Now, the
difference betweenApple andMusicWatch is that Apple has
easy access to the entire population of Apple Music users.
If they want to know what percentage of the population of
users is still using it, they simply need to count the number
of active users of the service and divide by the total number
of people who signed up. There is no uncertainty about
that particular number, because no sampling was needed to
estimate it (I assume Apple did not use sampling to estimate
the percentage).

If we believe that Apple and MusicWatch were measuring
the same thing in their analyses (and it’s not clear that they
were), then it would suggest that MusicWatch’s estimate of
the population percentage (48%) was quite far off from the
true value (21%). What would explain this large difference?

1. Randomvariation. It’s true thatMusicWatch’s survey
was a small sample relative to the full population,
but the sample was still big with 5,000 people. Fur-
thermore, the analysis was fairly simple (just taking
the proportion of users still using the service), so the
uncertainty associated with that estimate is unlikely
to be that large.
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2. Selection bias. Recall that it’s not clear how Mu-
sicWatch sampled its respondents, but it’s possible
that the way that they did it led them to capture a set
of respondents who were less inclined to use Apple
Music. Beyond this, we can’t really say more without
knowing the details of the survey process.

3. Measurement differences. One thing we don’t know
is howeitherMusicWatch orApple defined “still using
the service”. You could imagine a variety of ways to
determinewhether a personwas still using the service.
You could ask “Have you used it in the last week?” or
perhaps “Did you use it yesterday?” Responses to these
questions would be quite different and would likely
lead to different overall percentages of usage.

4. Respondents are not independent. It’s possible that
the survey respondents are not independent of each
other. This would primarily affect the uncertainty
about the estimate, making it larger than we might
expect if the respondents were all independent. How-
ever, since we do not know what MusicWatch’s un-
certainty about their estimate was in the first place,
it’s difficult to tell if dependence between respondents
could play a role.

6.7 Populations Come inMany Forms

There are a variety of strategies that one can employ to
setup a formal framework for making inferential state-
ments. Often, there is literally a population of units (e.g.
people, penguins, etc.) about which you want to make state-
ments. In those cases it’s clear where the uncertainty comes
from (sampling from the population) and what exactly it is
you’re trying to estimate (some feature of the population).
However, in other applications it might not be so clear what
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exactly is the population and what exactly it is you’re trying
to estimate. In those cases, you’ll have to be more explicit
about defining the population because there may be more
than one possibility.

Time series

Some processes are measured over time (every minute,
every day, etc.). For example, we may be interested in an-
alyzing data consisting of Apple’s daily closing stock price
for calendar year 2014. If we wanted to make an inference
from this dataset, what would the population be? There are
a few possibilities.

1. We might argue that the year 2014 was randomly
sampled from the population of all possible years of
data, so that inferences that we make apply to other
years of the stock price.

2. We might say the Apple’s stock represents a sample
from the entire stock market, so that we canmake infer-
ence about other stocks from this dataset.

Regardless of what you choose, it’s important to make clear
what population you are referring to before you attempt to
make inference from the data.

Natural processes

Natural phenomena, such as earthquakes, fires, hurricanes,
weather-related phenomena, and other events that occur in
nature, often are recorded over time and space. For purely
temporal measurements, wemight define the population in
the same way that we defined the population above with
the time series example. However, we may have data that
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is only measured in space. For example, we may have a map
of the epicenters of all earthquakes that have occurred in an
area. Then what is the population? One common approach
is to say that there is an unobserved stochastic process that
randomly drops earthquakes on to the area and that our
data represent a random sample from this process. In that
case, we are using the data to attempt to learn more about
this unobserved process.

Data as population

One technique that is always possible, but not commonly
used, is to treat the dataset as a population. In this case, there
is no inference because there’s no sampling. Because your
dataset is the population, there’s no uncertainty about any
characteristic of the population. This may not sound like a
useful strategy but there are circumstances where it can be
used to answer important questions. In particular, there are
timeswherewe do not care about things outside the dataset.

For example, it is common in organizations to analyze
salary data to make sure that women are not being paid
less than men for comparable work or that there are not
major imbalances between employees of different ethnic
groups. In this setting, differences in salaries between dif-
ferent groups can be calculated in the dataset and one can
see if the differences are large enough to be of concern. The
point is that the data directly answer a question of interest,
which is “Are there large salary differences that need to be
addressed?” In this case there’s no need to make an infer-
ence about employees outside the organization (there are
none, by definition) or to employees at other organizations
over which you would not have any control. The dataset is
the population and answers to any question regarding the
population are in that dataset.



7. Formal Modeling

Formal models are useful and often almost, if
not quite, essential for incisive thinking. —D. R.
Cox

This chapter is typically the part of the statistics textbook or
course where people tend to hit a wall. In particular, there’s
often a lot of math.Math is good, but gratuitous math is not
good. We are not in favor of that.

It’s important to realize that often it is useful to represent a
model using mathematical notation because it is a compact
notation and can be easy to interpret once you get used to it.
Also, writing down a statistical model using mathematical
notation, as opposed to just natural language, forces you
to be precise in your description of the model and in your
statement of what you are trying to accomplish, such as
estimating a parameter.

7.1 What Are the Goals of Formal
Modeling?

One key goal of formal modeling is to develop a precise
specification of your question and how your data can be
used to answer that question. Formal models allow you
to identify clearly what you are trying to infer from data
and what form the relationships between features of the
population take. It can be difficult to achieve this kind of
precision using words alone.
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Parameters play an important role inmany formal statistical
models (in statistical language, these are known as paramet-
ric statistical models). These are numbers that we use to rep-
resent features or associations that exist in the population.
Because they represent population features, parameters are
generally considered unknown, and our goal is to estimate
them from the data we collect.

For example, suppose we want to assess the relationship
between the number of ounces of soda consumed by a per-
son per day and that person’s BMI. The slope of a line that
youmight plot visualizing this relationship is the parameter
you want to estimate to answer your question: “How much
would BMI be expected to increase per each additional
ounce of soda consumed?” More specifically, you are using
a linear regression model to formulate this problem.

Another goal of formal modeling is to develop a rigorous
framework with which you can challenge and test your
primary results. At this point in your data analysis, you’ve
stated and refined your question, you’ve explored the data
visually and maybe conducted some exploratory modeling.
The key thing is that you likely have a pretty good sense
of what the answer to your question is, but maybe have
some doubts about whether your findings will hold up
under intense scrutiny. Assuming you are still interested
in moving forward with your results, this is where formal
modeling can play an important role.

7.2 General Framework

We can apply the basic epicycle of analysis to the formal
modeling portion of data analysis. We still want to set ex-
pectations, collect information, and refine our expectations
based on the data. In this setting, these three phases look as
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follows.

1. Setting expectations. Setting expectations comes in
the form of developing a primary model that represents
your best sense of what provides the answer to your
question. This model is chosen based on whatever
information you have currently available.

2. Collecting Information. Once the primary model is
set, we will want to create a set of secondary models
that challenge the primarymodel in someway.Wewill
discuss examples of what this means below.

3. Revising expectations. If our secondary models are
successful in challenging our primary model and put
the primary model’s conclusions in some doubt, then
we may need to adjust or modify the primary model
to better reflect what we have learned from the sec-
ondary models.

Primary model

It’s often useful to start with a primary model. This model
will likely be derived fromany exploratory analyses that you
have already conducted and will serve as the lead candidate
for something that succinctly summarizes your results and
matches your expectations. It’s important to realize that at
any given moment in a data analysis, the primary model is
not necessarily the final model. It is simply the model against
which you will compare other secondary models. The pro-
cess of comparing your model to other secondary models
is often referred to as sensitivity analyses, because you are
interested in seeing how sensitive your model is to changes,
such as adding or deleting predictors or removing outliers
in the data.

Through the iterative process of formal modeling, you may
decide that a different model is better suited as the primary



Formal Modeling 95

model. This is okay, and is all part of the process of setting
expectations, collecting information, and refining expecta-
tions based on the data.

Secondary models

Once you have decided on a primary model, you will then
typically develop a series of secondarymodels. The purpose
of these models is to test the legitimacy and robustness
of your primary model and potentially generate evidence
against your primary model. If the secondary models are
successful in generating evidence that refutes the conclu-
sions of your primary model, then you may need to revisit
the primary model and whether its conclusions are still
reasonable.

7.3 Associational Analyses

Associational analyses are ones where we are looking at an
association between two or more features in the presence
of other potentially confounding factors. There are three
classes of variables that are important to think about in an
associational analysis.

1. Outcome. The outcome is the feature of your dataset
that is thought to change along with your key pre-
dictor. Even if you are not asking a causal or mech-
anistic question, so you don’t necessarily believe that
the outcome responds to changes in the key predictor,
an outcome still needs to be defined for most formal
modeling approaches.

2. Key predictor. Often for associational analyses there
is one key predictor of interest (there may be a few of
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them). We want to know how the outcome changes
with this key predictor. However, our understanding
of that relationshipmay be challenged by the presence
of potential confounders.

3. Potential confounders. This is a large class of predic-
tors that are both related to the key predictor and the
outcome. It’s important to have a good understanding
what these are and whether they are available in your
dataset. If a key confounder is not available in the
dataset, sometimes there will be a proxy that is related
to that key confounder that can be substituted instead.

Once you have identified these three classes of variables in
your dataset, you can start to think about formal modeling
in an associational setting.

The basic form of a model in an associational analysis will
be

y = α+ βx+ γz + ε

where

• y is the outcome
• x is the key predictor
• z is a potential confounder
• ε is independent random error
• α is the intercept, i.e. the value y when x = 0 and z = 0

• β is the change in y associated with a 1-unit increase
x, adjusting for z

• γ is the change in y associated with a 1-unit increase
in z, adjusting for x



Formal Modeling 97

This is a linear model, and our primary interest is in esti-
mating the coefficient β, which quantifies the relationship
between the key predictor x and the outcome y.

Even though we will have to estimate α and γ as part of
the process of estimating β, we do not really care about the
values of those α and γ. In the statistical literature, coef-
ficients like α and γ are sometimes referred to as nuisance
parameters because we have to use the data to estimate them
to complete the model specification, but we do not actually
care about their value.

The model shown above could be thought of as the primary
model. There is a key predictor and one confounder in the
model where it is perhaps well known that you should ad-
just for that confounder. This model may produce sensible
results and follows what is generally known in the area.

Example: Online advertising campaign

Supposewe are selling a newproduct on theweb andwe are
interested in whether buying advertisements on Facebook
helps to increase the sales of that product. To start, wemight
initiate a 1-week pilot advertising campaign on Facebook
and gauge the success of that campaign. If it were successful,
we might continue to buy ads for the product.

One simple approach might be to track daily sales before,
during, and after the advertising campaign (note that there
are more precise ways to do this with tracking URLs and
Google Analytics, but let’s leave that aside for now). Put
simply, if the campaign were a week long, we could look
at the week before, the week during, and the week after to
see if there were any shifts in the daily sales.
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Expectations

In an ideal world, the data might look something like this.

Hypothetical Advertising Campaign

The tick marks on the x-axis indicate the period when the
campaign was active. In this case, it’s pretty obvious what
effect the advertising campaign had on sales. Using just your
eyes, it’s possible to tell that the ad campaign added about
$100 per day to total daily sales. Your primary model might
look something like
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y = α+ βx+ ε

where y is total daily sales and x is and indicator of whether
a given day fell during the ad campaign or not. The hypo-
thetical data for the plot above might look as follows.

sales campaign day

1 193.7355 0 1

2 201.8364 0 2

3 191.6437 0 3

4 215.9528 0 4

5 203.2951 0 5

6 191.7953 0 6

7 204.8743 0 7

8 307.3832 1 8

9 305.7578 1 9

10 296.9461 1 10

11 315.1178 1 11

12 303.8984 1 12

13 293.7876 1 13

14 277.8530 1 14

15 211.2493 0 15

16 199.5507 0 16

17 199.8381 0 17

18 209.4384 0 18

19 208.2122 0 19

20 205.9390 0 20

21 209.1898 0 21

Given this data and the primarymodel above, we’d estimate
β to be $96.78, which is not far off from our original guess
of $100.

Setting Expectations. The discussion of this ideal scenario
is important not because it’s at all likely to occur, but rather
because it instructs on what we would expect to see if the
world operated according to a simpler framework and how
we would analyze the data under those expectations.
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More realistic data

Unfortunately, we rarely see data like the plot above. In
reality, the effect sizes tend to be smaller, the noise tends
to be higher, and there tend to be other factors at play.
Typically, the data will look something like this.

More Realistic Daily Sales Data

While it does appear that there is an increase in sales during
the period of the ad campaign (indicated by the tick marks
again), it’s a bit difficult to argue that the increased sales
are caused by the campaign. Indeed, in the days before the
campaign starts, there appears to be a slight increase in sales.
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Is that by chance or are there other trends going on in the
background? It’s possible that there is a smooth background
trend so that daily sales tend to go up and down throughout
the month. Hence, even without the ad campaign in place,
it’s possible wewould have seen an increase in sales anyway.
The question now is whether the ad campaign increased
daily sales on top of this existing background trend.

Let’s take our primary model, which just includes the out-
come and the indicator of our ad campaign as a key predic-
tor. Using that model we estimate β, the increase in daily
sales due to the ad campaign, to be $44.75.

However, suppose we incorporated a background trend
into our model, so instead of our primary model, we fit the
following.

y = α+ βx+ γ1t+ γ2t
2 + ε

where t now indicates the day number (i.e. 1, 2, . . . , 21).
What we have done is add a quadratic function of t to
the model to allow for some curvature in the trend (as
opposed to a linear function that would only allow for a
strictly increasing or decreasing pattern). Using this model
we estimate β to be $39.86, which is somewhat less than
what the primary model estimated for β.

We can fit one final model, which allows for an even more
flexible background trend–we use a 4th order polynomial
to represent that trend.Althoughwemight findour quadratic
model to be sufficiently complex, the purpose of this last
model is to just push the envelope a little bit to see how
things change in more extreme circumstances. This model
gives us an estimate of β of $49.1, which is in fact larger than
the estimate from our primary model.
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At this point we have a primary model and two secondary
models, which give somewhat different estimates of the
association between our ad campaign and daily total sales.

Model Features Estimate for
β

Model 1
(primary)

No
confounders

$44.75

Model 2
(secondary)

Quadratic
time trend

$39.86

Model 3
(secondary)

4th order time
trend

$49.1

Evaluation

Determining where to go from here may depend on factors
outside of the dataset. Some typical considerations are

1. Effect size. The three models present a range of es-
timates from $39.86 to $49.1. Is this a large range?
It’s possible that for your organization a range of this
magnitude is not large enough to really make a dif-
ference and so all of the models might be considered
equivalent. Or you might consider these 3 estimates
to be significantly different from each other, in which
case you might put more weight on one model over
another. Another factor might be the cost of the ad-
vertising campaign, in which case you would be inter-
ested in the return on your investment in the ads. An
increase in $39.86 per daymight beworth it if the total
ad cost were $10 per day, but maybe not if the cost
were $20 per day. Then, you might need the increase
in sales to be higher to make the campaign worth-
while. The point here is that there’s some evidence
from your formal model that the ad campaign might
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only increase your total daily sales by 39.86, however,
other evidence says it might be higher. The question is
whether you think it is worth the risk to buymore ads,
given the range of possibilities, or whether you think
that even at the higher end, it’s probably not worth it.

2. Plausibility. Although you may fit a series of models
for the purposes of challenging your primarymodel, it
may be the case that some models are more plausible
than others, in terms of being close to whatever the
“truth” about the population is. Here, the model with
a quadratic trend seems plausible because it is capable
of capturing a possible rise-and-fall pattern in the
data, if one were present. The model with the 4th
order polynomial is similarly capable of capturing this
pattern, but seems overly complex for characterizing
a simple pattern like that. Whether a model could be
consideredmore or less plausible will depend on your
knowledge of the subject matter and your ability to
map real-world events to the mathematical formula-
tion of the model. Youmay need to consult with other
experts in this area to assess the plausibility of various
models.

3. Parsimony. In the case where the different models all
tell the same story (i.e. the estimates are β are close
enough together to be considered “the same”), it’s
often preferable to choose the model that is simplest.
There are two reasons for this. First, with a simpler
model it can be easier to tell a story about what is
going on in the data via the various parameters in
the model. For example, it’s easier to explain a lin-
ear trend than it is to explain an exponential trend.
Second, simplermodels, from a statistical perspective,
are more “efficient”, so that they make better use of
the data per parameter that is being estimated. Com-
plexity in a statistical model generally refers to the
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number of parameters in the model–in this example
the primary model has 2 parameters, whereas the
most complex model has 6 parameters. If no model
produces better results than another, we might prefer
a model that only contains 2 parameters because it
is simpler to describe and is more parsimonious. If
the primary and secondary models produce signifi-
cant differences, then might choose a parsimonious
model over amore complexmodel, but not if themore
complex model tells a more compelling story.

7.4 Prediction Analyses

In the previous section we described associational analyses,
where the goal is to see if a key predictor x and an outcome
y are associated. But sometimes the goal is to use all of the
information available to you to predict y. Furthermore, it
doesn’t matter if the variables would be considered unre-
lated in a causal way to the outcome you want to predict
because the objective is prediction, not developing an un-
derstanding about the relationships between features.

Withpredictionmodels,wehaveoutcomevariables–features
about which we would like to make predictions–but we
typically do not make a distinction between “key predic-
tors” and other predictors. In most cases, any predictor
that might be of use in predicting the outcome would be
considered in an analysis and might, a priori, be given equal
weight in termsof its importance in predicting the outcome.
Prediction analyses will often leave it to the prediction
algorithm to determine the importance of each predictor
and to determine the functional form of the model.

For many prediction analyses it is not possible to literally
write down the model that is being used to predict be-
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cause it cannot be represented using standardmathematical
notation. Many modern prediction routines are structured
as algorithms or procedures that take inputs and trans-
form them into outputs. The path that the inputs take to
be transformed into outputs may be highly nonlinear and
predictors may interact with other predictors on the way.
Typically, there are no parameters of interest that we try to
estimate–in fact many algorithmic procedures do not have
any estimable parameters at all.

The key thing to remember with prediction analyses is that
we usually do not care about the specific details of the
model. In most cases, as long as the method “works”, is
reproducible, and produces good predictions with minimal
error, then we have achieved our goals.

With prediction analyses, the precise type of analysis you
do depends on the nature of the outcome (as it does with all
analyses). Prediction problems typically come in the form
of a classification problemwhere the outcome is binary. In
some cases the outcome can take more than two levels, but
the binary case is by far the most common. In this section,
we will focus on the binary classification problem.

Expectations

What’s the ideal scenario in a prediction problem? Gener-
ally, what we want is a predictor, or a set of predictors, to
produce good separation in the outcome. Here’s an example
of a single predictor producing reasonable separation in a
binary outcome.
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Ideal Classification Scenario

The outcome takes values of 0 and 1, while the predictor is
continuous and takes values between roughly -2 and 2. The
gray zone indicated in the plot highlights the area where
values of the predictor can take on values of 0 or 1. To
the right of the gray area you’ll notice that the value of the
outcome is always 1 and to the left of the gray area the value
of the outcome is always 0. In prediction problems, it’s this
gray area where we have the most uncertainty about the
outcome, given the value of the predictor.

The goal of most prediction problems to identify a set of
predictors that minimizes the size of that gray area in the
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plot above. Counterintuitively, it is common to identify
predictors (particularly categorical ones) that perfectly sep-
arate the outcome, so that the gray area is reduced to zero.
However, such situations typically indicate a degenerate
problem that is not of much interest or even a mistake in
the data. For example, a continuous variable that has been
dichotomized will be perfectly separated by its continuous
counterpart. It is a common mistake to include the con-
tinuous version as a predictor in the model and the di-
chotomous version as the outcome. In real-world data, you
may see near perfect separation when measuring features
or characteristics that are known to be linked to each other
mechanistically or through some deterministic process. For
example, if the outcome were an indicator of a person’s
potential to get ovarian cancer, then the person’s sex might
be a very good predictor, but it’s not likely to be one of great
interest to us.

Real world data

For this example we will use data on the credit worthiness
of individuals. The dataset is taken from the UCI Ma-
chine Learning Repository1. The dataset classifies individ-
uals into “Good” or “Bad” credit risks and includes a variety
of predictors that may predict credit worthiness. There are
a total of 1000 observations in the dataset and 62 features.
For the purpose of this exposition, we omit the code for this
example, but the code files can be obtained from the Book’s
web site.

The first thing we do for a prediction problem is to divide
the data into a training dataset and a testing dataset. The
training dataset is for developing and fitting the model and
the testing dataset is for evaluating our fitted model and

1https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)

https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
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estimating its error rate. In this example we use a random
75% of the observations to serve as the training dataset. The
remaining 25% will serve as the test dataset.

After fitting the model to the training dataset we can com-
pute the predicted probabilities of being having “Good”
credit from the test dataset. We plot those predicted proba-
bilities on the x-axis along with each individuals true credit
status on the y-axis below. (The y-axis coordinates have
been randomly jittered to show some more detail.)

Prediction vs. Truth

Here we can see that there isn’t quite the good separation
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that we saw in the ideal scenario. Across the range of pre-
dicted probabilities, there are individuals with both “Good”
and “Bad” credit. This suggests that the prediction algo-
rithm that we have employed perhaps is having difficulty
finding a good combination of features that can separate
people with good and bad credit risk.

We can compute some summary statistics about the predic-
tion algorithm below.

Confusion Matrix and Statistics

Reference

Prediction Bad Good

Bad 2 1

Good 73 174

Accuracy : 0.704

95% CI : (0.6432, 0.7599)

No Information Rate : 0.7

P-Value [Acc > NIR] : 0.4762

Kappa : 0.0289

Mcnemar's Test P-Value : <2e-16

Sensitivity : 0.99429

Specificity : 0.02667

Pos Pred Value : 0.70445

Neg Pred Value : 0.66667

Prevalence : 0.70000

Detection Rate : 0.69600

Detection Prevalence : 0.98800

Balanced Accuracy : 0.51048

'Positive' Class : Good

We can see that the accuracy is about 70%, which is not
great for most prediction algorithms. In particular, the al-
gorithm’s specificity is very poor, meaning that if you are a
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“Bad” credit risk, the probability that you will be classified
as such is only about 2.6%.

Evaluation

For prediction problems, deciding on the next step after
initial model fitting can depend on a few factors.

1. Predictionquality. Is themodel’s accuracy good enough
for your purposes? This depends on the ultimate goal
and the risks associated with subsequent actions. For
medical applications, where the outcomemight be the
presence of a disease, we may want to have a high
sensitivity, so that if you genuinely have the disease,
the algorithm will detect it. That way we can get you
into treatment quickly. However, if the treatment is
very painful, perhaps with many side effects, then we
might actually prefer a high specificity, which would
ensure that we don’t mistakenly treat someone who
doesn’t have the disease. For financial applications, like
the credit worthiness example used here, there may
be asymmetric costs associated with mistaking good
credit for bad versus mistaking bad credit for good.

2. Model tuning. A hallmark of prediction algorithms is
their many tuning parameters. Sometimes these pa-
rameters can have large effects on prediction quality if
they are changed and so it is important to be informed
of the impact of tuning parameters for whatever al-
gorithm you use. There is no prediction algorithm for
which a single set of tuning parameters works well for
all problems. Most likely, for the initial model fit, you
will use “default” parameters, but these defaults may
not be sufficient for your purposes. Fiddling with the
tuning parameters may greatly change the quality of
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your predictions. It’s very important that you docu-
ment the values of these tuning parameters so that the
analysis can be reproduced in the future.

3. Availability of Other Data. Many prediction algo-
rithms are quite good at exploring the structure of
large and complex datasets and identifying a struc-
ture that can best predict your outcome. If you find
that your model is not working well, even after some
adjustment of tuning parameters, it is likely that you
need additional data to improve your prediction.

7.5 Summary

Formal modeling is typically the most technical aspect of
data analysis, and its purpose is to precisely lay out what
is the goal of the analysis and to provide a rigorous frame-
work for challenging your findings and for testing your as-
sumptions. The approach that you take can vary depending
primarily onwhether your question is fundamentally about
estimating an association or developing a good prediction.



8. Inference vs. Prediction:
Implications for Modeling
Strategy

Understandingwhether you’re answering an inferential ques-
tion versus a prediction question is an important concept
because the type of question you’re answering can greatly
influence the modeling strategy you pursue. If you do not
clearly understand which type of question you are asking,
youmay end up using thewrong type ofmodeling approach
and ultimatelymake thewrong conclusions from your data.
The purpose of this chapter is to show youwhat can happen
when you confuse one question for another.

The key things to remember are

1. For inferential questions the goal is typically to es-
timate an association between a predictor of interest
and the outcome. There is usually only a handful of
predictors of interest (or even just one), however there
are typically many potential confounding variables to
consider. They key goal of modeling is to estimate
an association while making sure you appropriately
adjust for any potential confounders. Often, sensitiv-
ity analyses are conducted to see if associations of
interest are robust to different sets of confounders.

2. For prediction questions the goal is to identify a
model that best predicts the outcome. Typically we do
not place any a priori importance on the predictors,
so long as they are good at predicting the outcome.
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There is no notion of “confounder” or “predictors of
interest” because all predictors are potentially useful
for predicting the outcome. Also, we often do not care
about “how the model works” or telling a detailed
story about the predictors. The key goal is to develop
a model with good prediction skill and to estimate a
reasonable error rate from the data.

8.1 Air Pollution andMortality in New
York City

The following example shows how different types of ques-
tions and corresponding modeling approaches can lead to
different conclusions. The example uses air pollution and
mortality data for New York City. The data were originally
used as part of the National Morbidity, Mortality, and Air
Pollution Study1 (NMMAPS).

Below is a plot of the daily mortality from all causes for the
years 2001–2005.

1http://www.ihapss.jhsph.edu

http://www.ihapss.jhsph.edu/
http://www.ihapss.jhsph.edu/
http://www.ihapss.jhsph.edu/
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Daily Mortality in New York City, 2001–2005

And here is a plot of 24-hour average levels of particulate
matter with aerodynamic diameter less than or equal to 10
microns (PM10).

Daily PM10 in New York City, 2001–2005

Note that there are many fewer points on the plot above
than there were on the plot of the mortality data. This is
because PM10 is not measured everyday. Also note that
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there are negative values in the PM10 plot–this is because
the PM10 data were mean-subtracted. In general, negative
values of PM10 are not possible.

8.2 Inferring an Association

The first approach we will take will be to ask, “Is there
an association between daily 24-hour average PM10 levels
and daily mortality?” This is an inferential question and
we are attempting to estimate an association. In addition,
for this question, we know there are a number of potential
confounders that we will have to deal with.

Let’s take a look at the bivariate association between PM10
and mortality. Here is a scatterplot of the two variables.
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PM10 andMortality in New York City

There doesn’t appear to be much going on there, and a
simple linear regression model of the log of daily mortality
and PM10 seems to confirm that.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.08884308354 0.0069353779 733.75138151 0.0000000

pm10tmean 0.00004033446 0.0006913941 0.05833786 0.9535247

In the table of coefficients above, the coefficient for pm10tmean
is quite small and its standard error is relatively large. Effec-
tively, this estimate of the association is zero.
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However, we know quite a bit about both PM10 and daily
mortality, and one thing we do know is that season plays
a large role in both variables. In particular, we know that
mortality tends to be higher in the winter and lower in the
summer. PM10 tends to show the reverse pattern, being
higher in the summer and lower in the winter. Because
season is related to both PM10 and mortality, it is a good
candidate for a confounder and it would make sense to
adjust for it in the model.

Here are the results for a second model, which includes
both PM10 and season. Season is included as an indicator
variable with 4 levels.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.166484285 0.0112629532 458.714886 0.000000e+00

seasonQ2 -0.109271301 0.0166902948 -6.546996 3.209291e-10

seasonQ3 -0.155503242 0.0169729148 -9.161847 1.736346e-17

seasonQ4 -0.060317619 0.0167189714 -3.607735 3.716291e-04

pm10tmean 0.001499111 0.0006156902 2.434847 1.558453e-02

Notice now that the pm10tmean coefficient is quite a bit larger
than before and its t value is large, suggesting a strong
association. How is this possible?

It turns out that we have a classic example of Simpson’s
Paradox2 here. The overall relationship between P10 and
mortality is null, but when we account for the seasonal
variation in both mortality and PM10, the association is
positive. The surprising result comes from the opposite
ways in which season is related to mortality and PM10.

So far we have accounted for season, but there are other po-
tential confounders. In particular, weather variables, such
as temperature and dew point temperature, are also both
related to PM10 formation and mortality.

2https://en.wikipedia.org/wiki/Simpson%27s_paradox

https://en.wikipedia.org/wiki/Simpson's_paradox
https://en.wikipedia.org/wiki/Simpson's_paradox
https://en.wikipedia.org/wiki/Simpson's_paradox
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In the following model we include temperature (tmpd) and
dew point temperature (dptp). We also include the date

variable in case there are any long-term trends that need to
be accounted for.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.62066568788 0.16471183741 34.1242365 1.851690e-96

date -0.00002984198 0.00001315212 -2.2689856 2.411521e-02

seasonQ2 -0.05805970053 0.02299356287 -2.5250415 1.218288e-02

seasonQ3 -0.07655519887 0.02904104658 -2.6361033 8.906912e-03

seasonQ4 -0.03154694305 0.01832712585 -1.7213252 8.641910e-02

tmpd -0.00295931276 0.00128835065 -2.2969777 2.244054e-02

dptp 0.00068342228 0.00103489541 0.6603781 5.096144e-01

pm10tmean 0.00237049992 0.00065856022 3.5995189 3.837886e-04

Notice that the pm10tmean coefficient is even bigger than
it was in the previous model. There appears to still be an
association between PM10 and mortality. The effect size is
small, but we will discuss that later.

Finally, another class of potential confounders includes other
pollutants. Before we place blame on PM10 as a harmful
pollutant, it’s important that we examine whether there
might be another pollutant that can explain what we’re
observing. NO2 is a good candidate because it shares some
of the same sources as PM10 and is known to be related to
mortality. Let’s see what happens when we include that in
the model.
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.61378604085 0.16440280471 34.1465345 2.548704e-96

date -0.00002973484 0.00001312231 -2.2659756 2.430503e-02

seasonQ2 -0.05143935218 0.02338034983 -2.2001105 2.871069e-02

seasonQ3 -0.06569205605 0.02990520457 -2.1966764 2.895825e-02

seasonQ4 -0.02750381423 0.01849165119 -1.4873639 1.381739e-01

tmpd -0.00296833498 0.00128542535 -2.3092239 2.174371e-02

dptp 0.00070306996 0.00103262057 0.6808599 4.965877e-01

no2tmean 0.00126556418 0.00086229169 1.4676753 1.434444e-01

pm10tmean 0.00174189857 0.00078432327 2.2208937 2.725117e-02

Notice in the table of coefficients that the no2tmean coeffi-
cient is similar in magnitude to the pm10tmean coefficient,
although its t value is not as large. The pm10tmean coefficient
appears to be statistically significant, but it is somewhat
smaller in magnitude now.

Below is a plot of the PM10 coefficient from all four of the
models that we tried.
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Association Between PM10 andMortality Under Different Models

With the exception of Model 1, which did not account for
any potential confounders, there appears to be a positive
association between PM10 and mortality across Models 2–
4.What this means andwhat we should do about it depends
on what our ultimate goal is and we do not discuss that in
detail here. It’s notable that the effect size is generally small,
especially compared to some of the other predictors in the
model. However, it’s also worth noting that presumably,
everyone in New York City breathes, and so a small effect
could have a large impact.
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8.3 Predicting the Outcome

Another strategy we could have taken is to ask, “What best
predicts mortality in New York City?” This is clearly a
prediction question and we can use the data on hand to
build a model. Here, we will use the random forests3 mod-
eling strategy, which is a machine learning approach that
performs well when there are a large number of predictors.
One type of output we can obtain from the random for-
est procedure is a measure of variable importance. Roughly
speaking, this measure indicates how important a given
variable is to improving the prediction skill of the model.

Below is a variable importance plot, which is obtained after
fitting a random forest model. Larger values on the x-axis
indicate greater importance.

3https://en.wikipedia.org/wiki/Random_forest

https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Random_forest
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Random Forest Variable Importance Plot for Predicting Mortality

Notice that the variable pm10tmean comes near the bottom
of the list in terms of importance. That is because it does
not contribute much to predicting the outcome, mortality.
Recall in the previous section that the effect size appeared
to be small, meaning that it didn’t really explain much vari-
ability in mortality. Predictors like temperature and dew
point temperature are more useful as predictors of daily
mortality. Even NO2 is a better predictor than PM10.

However, just because PM10 is not a strong predictor of
mortality doesn’t mean that it does not have a relevant
association with mortality. Given the tradeoffs that have
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to be made when developing a prediction model, PM10 is
not high on the list of predictors that we would include–we
simply cannot include every predictor.

8.4 Summary

In any data analysis, you want to ask yourself “Am I ask-
ing an inferential question or a prediction question?” This
should be cleared up before any data are analyzed, as the
answer to the question can guide the entire modeling strat-
egy. In the example here, if we had decided on a prediction
approach, we might have erroneously thought that PM10
was not relevant to mortality. However, the inferential ap-
proach suggested a statistically significant association with
mortality. Framing the question right, and applying the
appropriate modeling strategy, can play a large role in the
kinds of conclusions you draw from the data.



9. Interpreting Your Results

Although we have dedicated an entire chapter to interpret-
ing the results of a data analysis, interpretation is actually
happening continuously throughout an analysis. Experi-
enced data analysts may not even be aware of how often
they are interpreting their findings because it has become
second nature to them.

By now the 3 step epicyclic process of: setting expectations,
collecting information (data), and then matching expecta-
tions to the data, should be very familiar to you, so you
will recognize that the third step, matching expectations
to the data, is itself interpretation. In some ways, we have
addressed the topic of interpreting results throughout the
book. However, it deserves its own chapter because there
is much more to interpretation than matching expectations
to results and because it is, in and of itself, a major step
of data analysis. Because interpretation happens most de-
liberately after completing your primary and supportive
analyses, including formal modeling, but before communi-
cating results, we have placed this chapter in between these
respective chapters.

9.1 Principles of Interpretation

There are several principles of interpreting results that we
will illustrate in this chapter. These principles are:

1. Revisit your original question
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2. Start with the primary statistical model to get your
bearings and focus on the nature of the result rather
than on a binary assessment of the result (e.g. sta-
tistically significant or not). The nature of the result
includes three characteristics: its directionality, mag-
nitude, and uncertainty. Uncertainty is an assessment
of how likely the result was obtained by chance.

3. Develop an overall interpretation based on (a) the
totality of your analysis and (b) the context of what
is already known about the subject matter.

4. Consider the implications, which will guide you in
determining what action(s), if any, should be taken as
a result of the answer to your question.

It is important to note that the epicycle of analysis also
applies to interpretation. At each of the steps of interpre-
tation, you should have expectations prior to performing
the step, and then see if the result of the step matches
your expectations. Your expectations are based onwhat you
learned in the process of your exploratory data analysis
and formalmodeling, andwhen your interpretation doesn’t
match your expectations, then you will need to determine
whether they don’t match because your expectations are
incorrect or your interpretation is incorrect. Even though
you may be on one of the last steps of data analysis when
you are formally interpreting your results, you may need to
go back to exploratory data analysis or modeling to match
expectations to data.

9.2 Case Study: Non-diet Soda
Consumption and BodyMass Index

It is probably easiest to see the principles of interpretation
in action in order to learn how to apply them to your own
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data analysis, so we will use a case study to illustrate each of
the principles.

Revisit the Question

The first principle is reminding yourself of your original
question. This may seem like a flippant statement, but it
is not uncommon for people to lose their way as they go
through the process of exploratory analysis and formal
modeling. This typically happens when a data analyst wan-
ders too far off course pursuing an incidental finding that
appears in the process of exploratory data analysis or formal
modeling. Then the final model(s) provide an answer to
another question that popped up during the analyses rather
than the original question.

Reminding yourself of your question also serves to provide
a framework for your interpretation. For example, your
original question may have been, “For every 12-ounce can
of soda drunk per day, how much greater is the average
BMI among adults in theUnited States?” Thewording of the
question tells you that your original intentwas to determine
how much greater the BMI is among adults in the US who
drink, for example, two 12-ounce cans of sodas per day on
average, than among adults who drink only one 12-ounce
soda per day on average. The interpretation of your analyses
should yield a statement such as: For every 1 additional
12-ounce can of soda that adults in the US drink, BMI
increases, on average, by X kg/m2. But it should not yield
a statement such as: “For every additional ounce of soda that
adults in the US drink, BMI increases, on average, by X
kg/m2.”

Another way in which revisiting your question provides a
framework for interpreting your results is that reminding
yourself of the type of question that you asked provides
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an explicit framework for interpretation (See Stating and
Refining the Question for a review of types of questions).
For example, if your questionwas, “Among adults in theUS,
do those who drink 1 more 12-ounce serving of non-diet
soda per day have a higher BMI, on average?”, this tells you
that your question is an inferential question and that your
goal is to understand the average effect of drinking an ad-
ditional 12-ounce serving of non-diet soda per day on BMI
among the US adult population. To answer this question,
you may have performed an analysis using cross-sectional
data collected on a sample that was representative of the US
adult population, and in this case your interpretation of the
result is framed in terms of what the association is between
an additional 12-ounce serving of soda per day and BMI, on
average in the US adult population.

Because your question was not a causal one, and therefore
your analysis was not a causal analysis, the result cannot
be framed in terms of what would happen if a population
started consuming an additional can of soda per day. A
causal question might be: “What effect does drinking an
additional 12-ounce serving of non-diet soda per day have
on BMI?”, and to answer this question, you might analyze
data from a clinical trial that randomly assigned one group
to drink an additional can of soda and the other group to
drink an additional can of a placebo drink. The results from
this type of question and analysis could be interpreted as
what the causal effect of drinking additional 12-ounce can
of soda per day would be on BMI. Because the analysis
is comparing the average effect on BMI between the two
groups (soda and placebo), the result would be interpreted
as the average causal effect in the population.

A third purpose of revisiting your original question is that it
is important to pause and consider whether your approach
to answering the question could have produced a biased re-
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sult. Although we covered bias to some degree in the chap-
ter on Stating and Refining the Question, sometimes new
information is acquired during the process of exploratory
data analysis and/or modeling that directly affects your
assessment of whether your result might be biased. Recall
that bias is a systematic problem with the collection or
analysis of the data that results in an incorrect answer to
your question.

We will use the soda-BMI example to illustrate a simpler
example of bias. Let’s assume that your overall question
about the soda-BMI relationship had included an initial
question, which was, “What is the mean daily non-diet soda
consumption among adults in the US?” Let’s assume that
your analysis indicates that in the sample you are analyzing,
which is a sample of all adults in theUS, the average number
of 12-ounce servings of non-diet soda drunk per day is 0.5,
so you infer that the average number of 12-ounce servings
of soda drunk per day by adults in the US is also 0.5. Since
you should always challenge your results, it is important to
consider whether your analysis has an inherent bias.

So how do you do this? You start by imagining that your
result is incorrect, and then think through theways inwhich
the data collection or analysis could have had a systematic
problem that resulted in an incorrect estimate of the mean
number of 12-ounce cans of non-diet soda drunk per day
by adults in theUS. Although this exercise of imagining that
your result is wrong is discussed as an approach to assessing
the potential for bias, this is a terrific way to challenge
your results at every step of the analysis, whether you
are assessing risk of bias, or confounding, or a technical
problem with your analysis.

The thought experiment goes something like this: imagine
that the true average number of 12-ounce servings of non-
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diet soda drunk per day by adults in the US is 2. Now
imagine how the result from your analysis of the sample,
which was 0.5, might be so far off from the true result: for
some reason, the sample of the population that comprises
your dataset is not a random sample of the population
and instead has a disproportionate number of people who
do not drink any non-diet soda, which brings down the
estimated mean number of 12 ounces of servings of non-
diet soda consumed per day. You might also imagine that
if your sample result had been 4, which is much higher
than the true amount drunk per day by adults in the US,
that your sample has a disproportionate number of people
who have high consumption of non-diet soda so that the
estimate generated from your analyses is higher than the
true value. So how can you gauge whether your sample is
non-random?

To figure out if your sample is a non-random sample of
the target population, think about what could have hap-
pened to attract more people who don’t consume non-
diet soda (or more people who consume a lot of it) to be
included in the sample. Perhaps the study advertised for
participation in a fitness magazine, and fitness magazine
readers are less likely to drink non-diet soda. Or perhaps
the data were collected by an internet survey and internet
survey respondents are less likely to drink non-diet soda.
Or perhaps the survey captured information about non-
diet soda consumption by providing a list of non-diet sodas
and asking survey respondents to indicate which ones they
had consumed, but the survey omitted Mountain Dew and
Cherry Coke, so that those people who drink mostly these
non-diet sodas were classified as not consuming non-diet
soda (or consuming less of it than they actually do consume).
And so on.

Althoughwe illustrated the simplest scenario for bias,which
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occurs when estimating a prevalence or a mean, you of
course can get a biased result for an estimate of a rela-
tionship between two variables as well. For example, the
survey methods could unintentionally oversample people
who both don’t consume non-diet soda and have a high
BMI (such as people with type 2 diabetes), so that the result
would indicate (incorrectly) that consuming non-diet soda
is not associatedwith having a higher BMI. The point is that
pausing to perform a deliberate thought experiment about
sources of bias is critically important as it is really the only
way to assess the potential for a biased result. This thought
experiment should also be conducted when you are stating
and refining your question and also as you are conducting
exploratory analyses and modeling.

Start with the primary model and assess the
directionality, magnitude, and uncertainty of the
result

The second principle is to start with a single model and
focus on the full continuum of the result, including its
directionality and magnitude, and the degree of certainty
(or uncertainty) there is about whether the result from the
sample you analyzed reflects the true result for the overall
population. A great deal of information that is required for
interpreting your results will be missed if you zoom in on
a single feature of your result (such as the p-value), so that
you either ignore or gloss over other important information
provided by the model. Although your interpretation isn’t
complete until you consider the results in totality, it is
often most helpful to first focus on interpreting the results
of the model that you believe best answers your question
and reflects (or “fits”) your data, which is your primary
model (See Formal Modeling). Don’t spend a lot of time
worrying about which singlemodel to start with, because in
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the end you will consider all of your results and this initial
interpretation exercise serves to orient you and provide a
framework for your final interpretation.

Directionality

Building on the soda-BMI example, take a look at sample
dataset below with a fitted model overlaid.

Sample Data for BMI-soda Example

We will focus on what the model tells us about the direc-
tionality of the relationship between soda consumption
and BMI, themagnitude of the relationship, and the uncer-
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tainty of the relationship, or how likely the model’s depic-
tion of the relationship between non-diet soda consump-
tion and BMI is real vs. just a reflection of random variation
you’d expect when sampling from a larger population.

The model indicates that the directionality of the relation-
ship is positive,meaning that as non-diet soda consumption
increases, BMI increases. The other potential results could
have been a negative directionality, or no directionality (a
value of approximately 0). Does the positive directionality
of the result match your expectations that have been de-
veloped from the exploratory data analysis? If so, you’re
in good shape and can move onto the next interpretation
activity. If not, there are a couple of possible explanations.
First your expectations may not be correct because either
the exploratory analysis was done incorrectly or your in-
terpretation of the exploratory analyses was not correct.
Second, the exploratory analysis and your interpretation of
it may be correct, but the formal modeling may have been
done incorrectly.Notice thatwith this process, you are once
again applying the epicycle of data analysis.

Magnitude

Once you have identified and addressed any discrepancies
between your expectations and interpretation of the direc-
tionality of the relationship, the next step is to consider the
magnitude of the relationship. Because themodel is a linear
regression, you can see that the slope of the relationship,
reflected by the beta coefficient, is 0.28. Interpreting the
slope requires knowing the units of the “soda” variable.
If the units are 12-ounce cans of soda per day, then the
interpretation of this slope is that BMI increases by 0.28
kg/m2 per additional 12-ounce can of non-diet soda that is
consumed per day. However, the units are in ounces of soda,
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so the interpretation of yourmodel is that BMI increases by
0.28 kg/m2 for each additional ounce of non-diet soda that
is consumed per day.

Although you’re comfortable that you understand the units
of your soda variable correctly and have the correct inter-
pretation of the model, you still don’t quite have the answer
to your question, which was framed in terms of the asso-
ciation of each additional 12-ounce can of soda and BMI,
not each additional ounce of non-diet soda. So you’ll need
to convert the 0.28 slope so that it pertains to a 12-ounce,
rather than 1 ounce, increase in soda consumption. Because
the model is a linear model, you can simply multiply the
slope, or beta coefficient, by 12 to get 3.36, which tells you
that each additional 12-ounce can of soda consumed per
day is associated with a BMI that is 3.36 kg/m2 higher.

The other option of course is to create a new soda variable
whose unit is 12 ounces rather than 1 ounce, but multi-
plying the slope is a simple mathematical operation and is
much more efficient. Here again you should have had some
expectations, based on the exploratory data analysis you
did, about the magnitude of the relationship between non-
diet soda consumption and BMI, so you should determine
if your interpretation of the magnitude of the relationship
matches your expectations. If not, you’ll need to determine
whether your expectations were incorrect or whether your
interpretation was incorrect and act accordingly to match
expectations and the result of your interpretation.

Another important consideration about the magnitude of
the relationship is whether it is meaningful. For example, a
0.01 increase in BMI for every additional 20 ounces con-
sumed per day is probably not particularly meaningful as a
large amount of soda is associatedwith a very small increase
in BMI. On the other hand, if there were a 0.28 kg/m2
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increase in BMI for every 1 ounce increase in soda con-
sumption, this would in fact be quite meaningful. Because
you know BMI generally ranges from the high teens to the
30’s, a change of 0.01 kg/m2 is small, but a change of 0.28
kg/m2 could be meaningful.

When taken in the context of the kinds of volumes of soda
people might consume, a 0.01 kg/m2 for each 20 ounce
increase in soda consumption is small since people are
(hopefully) not drinking 10 twenty ounce servings per day,
which is how much someone would need to drink in order
to observe even a 0.1 kg/m2 increase in BMI. On the other
hand a 0.28 kg/m2 increase in BMI for every additional
ounce of soda would add up quickly for people who con-
sumed an extra 20 ounce non-diet soda per day - this would
equate to an expected increase in BMI of 5.6 kg/m2. A key
part of interpreting the magnitude of the result, then, is
understanding how the magnitude of the result compares
to what you know about this type of information in the
population you’re interested in.

Uncertainty

Now that you have a handle on what the model says about
the directionality and magnitude of the relationship be-
tween non-diet soda consumption and BMI, the next step
it to consider what the degree of uncertainty is for your
answer. Recall that your model has been constructed to fit
data collected from a sample of the overall population and
that you are using this model to understand how non-diet
soda consumption is related toBMI in the overallpopulation
of adults in the US.

Let’s get back to our soda-BMI example, which does involve
using the results that are obtained on the sample to make
inferences about what the true soda-BMI relationship is in
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the overall population of adults in theUS. Let’s imagine that
the result from your analysis of the sample data indicates
that within your sample, people who drink an additional
ounce of non-diet soda per day have a BMI that is 0.28
kg/m2 greater than those who drink an ounce less per day.
However, how do you know whether this result is simply
the “noise” of random sampling or whether it is a close
approximation of the true relationship among the overall
population?

To assess whether the result from the sample is simply
random “noise”, we use measures of uncertainty. Although
some might expect that all random samples serve as excel-
lent surrogates for the overall population, this is not true.
To illustrate this idea using a simple example, imagine that
the prevalence of females in the overall US adult population
is 51%, and you draw a random sample of 100 adults. This
samplemay have 45% females. Imagine that you draw a new
sample of 100 adults and your sample has 53% females. You
could draw many samples like this and even draw samples
of 35% or 70% females. The probability of drawing a sample
with a prevalence of females that is this different from the
overall population prevalence of females is very small, while
the probability of drawing a sample that has close to 51%
females is much higher.

It is this concept—the probability that your sample re-
flects the answer for the overall population varies de-
pending on how close (or far) your sample result is to the
true result for the overall population—that is the bedrock
of the concept of uncertainty. Because we don’t know what
the answer is for the overall population (that’s why we’re
doing the analysis in the first place!), it’s impossible to
express uncertainty in terms of how likely or unlikely it
is that your sample result reflects the overall population.
So there are other approaches to measuring uncertainty
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that rely on this general concept, and we will discuss two
common approaches below.

One tool that provides a more continuous measure of un-
certainty is the confidence interval. A confidence interval is
a range of values that contains your sample result and you
have some amount of confidence that it also contains the
true result for the overall population. Most often statistical
modeling software provides 95% confidence intervals, so
that if the 95% CI for the sample estimate of 0.28 kg/m2

from above is 0.15–0.42 kg/m2, the approximate interpre-
tation is that you can be 95% confident that the true result
for the overall population is somewhere between 0.15 and
0.42 kg/m2.

Amore precise definition of the 95% confidence inter-
val would be that over repeated samples, if we were
to conduct this experiment many times (each time
collecting a dataset of the same size) then a confidence
interval constructed in this manner would cover the
truth 95% of the time. It’s important to realize that be-
cause the confidence interval is constructed from the
data, the interval itself is random. Therefore, if we were
to collect new data, the interval we’d construct would
be slightly different. However, the truth, meaning the
population value of the parameter, would always re-
main the same.

Another tool for measuring uncertainty is, of course, the p-
value, which simply is the probability of getting the sam-
ple result of 0.28 kg/m2 (or more extreme) when the true
relationship between non-diet soda consumption and BMI
in the overall population is 0. Although the p-value is a
continuous measure of uncertainty, many people consider
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a p-value of <0.05, which indicates that there is a less than
5% probability of observing the sample result (or a more
extreme result) when there is no relationship in the overall
population, as “statistically significant”. This cutpoint is ar-
bitrary and tells us very little about the degree of uncertainty
or about where the true answer for the overall population
lies. Focusing primarily on the p-value is a risky approach
to interpreting uncertainty because it can lead to ignoring
more important information needed for thoughtful and
accurate interpretation of your results.

The CI is more helpful than the p-value, because it gives
a range, which provides some quantitative estimate about
what the actual overall population result is likely to be, and
it also provides a way to express how certain it is that the
range contains the overall population result.

Let’s walk through how the p-value vs. 95% CI would be
used to interpret uncertainty about the result from the
soda-BMI analysis. Let’s say that our result was that BMI
was 0.28 kg/m2 higher on average among our sample who
drank one ounce more of non-diet soda per day and that
the p-value associated with this result was 0.03. Using the
p-value as a tool for measuring uncertainty and setting a
threshold of statistical significance at 0.05, we would in-
terpret the uncertainty as follows: there is a less than 5%
chance that we would get this result (0.28) or something
more extreme if the true population value was 0 (or in other
words, that therewas really not an association between soda
consumption and BMI in the overall population).

Now let’s go through the same exercise with the 95% CI.
The 95% CI for this analysis is 0.15–0.42. Using the CI
as the tool for interpreting uncertainty, we could say that
we are 95% confident that the true relationship between
soda consumption and BMI in the adult US population lies
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somewhere between a 0.15 and 0.42 kg/m2 increase in BMI
on average per additional ounce of non-diet soda that is
consumed. Using this latter approach tells us something
about the range of possible effects of soda on BMI and also
tells us that it is very unlikely that soda has no association
with BMI in the overall population of adults in the US.
Using the p-value as the measure of uncertainty, on the
other hand, implies that we have only two choices in terms
of interpreting the result: either there is a good amount of
uncertainty about it sowemust conclude that there is no re-
lationship between soda consumption and BMI, or there is
very little uncertainty about the result so we must conclude
that there is a relationship between soda consumption and
BMI. Using the p-value constrains us in a way that does not
reflect the process of weighing the strength of the evidence
in favor (or against) a hypothesis.

Another point about uncertainty is that we have discussed
assessing uncertainty through more classical statistical ap-
proaches, which are based on the Frequentist paradigm,
which is the most common approach. The Bayesian frame-
work is an alternate approach in which you update your
prior beliefs based on the evidence provided by the analysis.
In practice, the Frequentist approach we discussed above is
more commonly used, and in real-world setting rarely leads
to conclusions that would be different from those obtained
by using a Bayesian approach.

One important caveat is that sometimes evaluating un-
certainty is not necessary because some types of analyses
are not intended to make inferences about a larger overall
population. If, for example, you wanted to understand the
relationship between age and dollars spent per month on
your company’s products, you may have all of the data on
the entire, or “overall” population you are interested in,
which is your company’s customers. In this case you do not
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have to rely on a sample, because your company collects
data about the age and purchases of ALL of their customers.
In this case, youwould not need to consider the uncertainty
that your result reflects the truth for the overall population
because your analysis result is the truth for your overall
population.

Develop an overall interpretation by considering
the totality of your analyses and external
information

Now that you have dedicated a good amount of effort inter-
preting the results of your primary model, the next step is
to develop an overall interpretation of your results by con-
sidering both the totality of your analyses and information
external to your analyses. The interpretation of the results
from your primary model serves to set the expectation for
your overall interpretation when you consider all of your
analyses. Building on the soda-BMI example, let’s assume
that your interpretation of your primary model is that BMI
is 0.28 kg/m2 higher on average among adults in the US
who consume an average one additional ounce of soda per
day. Recall that this primary model was constructed after
gathering information through exploratory analyses and
that you may have refined this model when you were going
through the process of interpreting its results by evaluating
the directionality,magnitude anduncertainty of themodel’s
results.

As discussed in the Formal Modeling chapter, there is not
one single model that alone provides the answer to your
question. Instead, there are additional models that serve
to challenge the result obtained in the primary model. A
common type of secondary model is the model which is
constructed to determine how sensitive the results in your
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primary model are to changes in the data. A classic example
is removing outliers to assess the degree to which your
primary model result changes. If the primary model results
were largely driven by a handful of, for example, very high
soda consumers, this finding would suggest that there may
not be a linear relationship between soda consumption and
BMI and that instead soda consumptionmay only influence
BMI among those who have very high consumption of
soda. This finding should lead to a revision of your primary
model.

A second example is evaluating the effect of potential con-
founders on the results from the primary model. Although
the primarymodel should already contain key confounders,
there are typically additional potential confounders that
should be assessed. In the soda-BMI example, you may
construct a secondary model that includes income because
you realize that it is possible that the relationship you ob-
serve in your primary model could be explained entirely
by socioeconomic status: people of higher socioeconomic
status might drink less non-diet soda and also have lower
BMIs, but it is not because they drink less soda that this
is the case. Instead, it is some other factor associated with
socioeconomic status that has the effect on BMI. So you
can run a secondary model in which income is added to
the primary model to determine if this is the case. Although
there are other examples of uses of secondarymodels, these
are two common examples.

So how do you interpret how these secondary model re-
sults affect your primary result? You can fall back on the
paradigm of: directionality, magnitude, and uncertainty.
When you added income to the soda-BMI model, did in-
come change the directionality of your estimated relation-
ship between soda andBMI from the primarymodel - either
to a negative association or no association? If it did, that
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would be a dramatic change and suggest that either some-
thing is not right with your data (such as with the income
variable) or that the association between soda consumption
and BMI is entirely explained by income.

Let’s assume that adding income did not change the di-
rectionality and suppose that it changed the magnitude so
that the primary model’s estimate of 0.28 kg/m2 decreased
to 0.12kg/m2. The magnitude of the relationship between
soda and BMI was reduced by 57%, so this would be inter-
preted as income explaining a little more than half, but not
all, of the relationship between soda consumption and BMI.

Now you move on to uncertainty. The 95% CI for the
estimate with the model that includes income is 0.01–0.23,
so that we can be 95% confident that the true relationship
between soda andBMI in the adultUS population, indepen-
dent of income, lies somewhere in this range. What if the
95% CI for the estimate were -0.02–0.26, but the estimate
was still 0.12 kg/m2? Even though the CI now includes 0,
the result from the primary model, 0.12, did not change,
indicating that income does not appear to explain any of the
association between soda consumption and BMI, but that it
did increase the uncertainty of the result. One reason that
the addition of income to the model could have increased
the uncertainty is that some people in the sample were
missing income data so that the sample size was reduced.
Checking your n’s will help you determine if this is the case.

It’s also important to consider your overall results in the
context of external information. External information is
both general knowledge that you or your team members
have about the topic, results from similar analyses, and
information about the target population. One example dis-
cussed above is that having a sense of what typical and
plausible volumes of soda consumption are among adults in
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the US is helpful for understanding if the magnitude of the
effect of soda consumption on BMI is meaningful. It may
also be helpful to knowwhat percent of the adult population
in theUSdrinks non-diet soda and the prevalence of obesity
to understand the size of the population for whom your
results might be pertinent.

One interesting example of how important it is to think
about the size of the population that may be affected is air
pollution. For associations between outdoor air pollution
and critical health outcomes such as cardiovascular events
(stroke, heart attack), the magnitude of the effect is small,
but because air pollution affects hundreds of millions of
people in the US, the numbers of cardiovascular events
attributable to pollution is quite high.

In addition, you probably are not the first person to try
and answer this question or related questions. Others may
have done an analysis to answer the question in another
population (adolescents, for example) or to answer a related,
but different question, such as: “what is the relationship
between non-diet soda consumption and blood sugar lev-
els?” Understanding how your results fit into the context
of the body of knowledge about the topic helps you and
others assess whether there is an overall story or pattern
emerging across all sources of knowledge that point to non-
diet soda consumption being linked to high blood sugar,
insulin resistance, BMI, and type 2 diabetes. On the other
hand, if the results of your analysis differ from the external
knowledge base, that is important too. Although most of
the time when the results are so strikingly different from
external knowledge, there is an explanation such as an error
or differences in methods of data collection or population
studied, sometimes a distinctly different finding is a truly
novel insight.
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Implications

Now that you’ve interpreted your results and have conclu-
sions in hand, you’ll want to think about the implications
of your conclusions. After all, the point of doing an anal-
ysis is usually to inform a decision or to take an action.
Sometimes the implications are straightforward, but other
times the implications take some thought. An example of a
straightforward implication is if you performed an analysis
to determine if purchasing ads increased sales, and if so, did
the investment in ads result in a net profit. You may learn
that either there was a net profit or not, and if there were a
net profit, this finding would support continuing the ads.

Amore complicated example is the soda-BMI examplewe’ve
used throughout this chapter. If soda consumption turned
out to be associated with higher BMI, with a 20 ounce addi-
tional serving per day associated with a 0.28 kg/m2 greater
BMI, this finding would imply that if you could reduce
soda consumption, you could reduce the average BMI of
the overall population. Since your analysis wasn’t a causal
one, though, and you only demonstrated an association, you
may want to perform a study in which you randomly assign
people to either replacing one of the 20 ounce sodas they
drink each day with diet soda or to not replacing their non-
diet soda. In a public health setting, though, your team may
decide that this association is sufficient evidence to launch
a public health campaign to reduce soda consumption, and
that you do not need additional data from a clinical trial.
Instead, you may plan to track the population’s BMI during
and after the public health campaign as a means of esti-
mating the public health effect of reducing non-diet soda
consumption. The take-home point here is that the action
that results from the implications often depends on the
mission of the organization that requested the analysis.



10. Communication

Communication is fundamental to good data analysis.What
we aim to address in this chapter is the role of routine
communication in the process of doing your data analysis
and in disseminating your final results in a more formal
setting, often to an external, larger audience. There are lots
of good books that address the “how-to” of giving formal
presentations, either in the form of a talk or a written piece,
such as a white paper or scientific paper. In this chapter,
though, we will focus on:

1. How to use routine communication as one of the tools
needed to perform a good data analysis; and

2. How to convey the key points of your data analysis
when communicating informally and formally.

Communication is both one of the tools of data analysis,
and also the final product of data analysis: there is no point
in doing a data analysis if you’re not going to communicate
your process and results to an audience. A good data analyst
communicates informally multiple times during the data
analysis process and also gives careful thought to commu-
nicating the final results so that the analysis is as useful
and informative as possible to the wider audience it was
intended for.

10.1 Routine communication

The main purpose of routine communication is to gather
data, which is part of the epicyclic process for each core
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activity. You gather data by communicating your results
and the responses you receive from your audience should
inform the next steps in your data analysis. The types of
responses you receive include not only answers to specific
questions, but also commentary and questions your audi-
ence has in response to your report (either written or oral).
The form that your routine communication takes depends
on what the goal of the communication is. If your goal, for
example, is to get clarity on how a variable is coded because
when you explore the dataset it appears to be an ordinal
variable, but you had understood that it was a continuous
variable, your communication is brief and to the point.

If, on the other hand, some results from your exploratory
data analysis are not what you expected, your communi-
cation may take the form of a small, informal meeting that
includes displaying tables and/or figures pertinent to your
issue. A third type of informal communication is one in
which you may not have specific questions to ask of your
audience, but instead are seeking feedback on the data anal-
ysis process and/or results to help you refine the process
and/or to inform your next steps.

In sum, there are three main types of informal communi-
cation and they are classified based on the objectives you
have for the communication: (1) to answer a very focused
question, which is often a technical question or a question
aimed at gathering a fact, (2) to help youwork through some
results that are puzzling or not quitewhat you expected, and
(3) to get general impressions and feedback as a means of
identifying issues that had not occurred to you so that you
can refine your data analysis.

Focusing on a few core concepts will help you achieve your
objectives when planning routine communication. These
concepts are:
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1. Audience: Know your audience and when you have
control over who the audience is, select the right au-
dience for the kind of feedback you are looking for.

2. Content: Be focused and concise, but provide suffi-
cient information for the audience to understand the
information you are presenting and question(s) you
are asking.

3. Style: Avoid jargon. Unless you are communicating
about a focused highly technical issue to a highly tech-
nical audience, it is best to use language and figures
and tables that can be understood by a more general
audience.

4. Attitude: Have an open, collaborative attitude so that
you are ready to fully engage in a dialogue and so that
your audience gets the message that your goal is not
to “defend” your question or work, but rather to get
their input so that you can do your best work.

10.2 The Audience

For many types of routine communication, you will have
the ability to select your audience, but in some cases, such
as when you are delivering an interim report to your boss
or your team, the audience may be pre-determined. Your
audience may be composed of other data analysts, the indi-
vidual(s) who initiated the question, your boss and/or other
managers or executive team members, non-data analysts
who are content experts, and/or someone representing the
general public.

For the first type of routine communication, in which you
are primarily seeking factual knowledge or clarification
about the dataset or related information, selecting a person
(or people) who have the factual knowledge to answer the
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question and are responsive to queries is most appropriate.
For a question about how the data for a variable in the
dataset were collected, you might approach a person who
collected the data or a person who has worked with the
dataset before or was responsible for compiling the data.
If the question is about the command to use in a statistical
programming language in order to run a certain type of
statistical test, this information is often easily found by an
internet search. But if this fails, querying a person who uses
the particular programming language would be appropri-
ate.

For the second type of routine communication, in which
you have some results and you are either unsure whether
they are what you’d expect, or they are not what you ex-
pected, you’ll likely be most helped if you engage more
than one person and they represent a range of perspectives.
The most productive and helpful meetings typically in-
clude people with data analysis and content area expertise.
As a rule of thumb, the more types of stakeholders you
communicate with while you are doing your data analysis
project, the better your final product will be. For example,
if you only communicate with other data analysts, you may
overlook some important aspects of your data analysis that
would have been discovered had you communicated with
your boss, content experts, or other people.

For the third type of routine communication, which typ-
ically occurs when you have come to a natural place for
pausing your data analysis. Although when and where in
your data analysis these pauses occur are dictated by the
specific analysis you are doing, one very common place
to pause and take stock is after completing at least some
exploratory data analysis. It’s important to pause and ask
for feedback at this point as this exercise will often identify
additional exploratory analyses that are important for in-
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forming next steps, such as model building, and therefore
prevent you from sinking time and effort into pursuing
models that are not relevant, not appropriate, or both. This
sort of communication is most effective when it takes the
form of a face-to-face meeting, but video conferencing and
phone conversations can also be effective. When selecting
your audience, think about who among the people available
to you give the most helpful feedback and which perspec-
tives will be important for informing the next steps of
your analysis. At a minimum, you should have both data
analysis and content expertise represented, but in this type
of meeting it may also be helpful to hear from people who
share, or at least understand, the perspective of the larger
target audience for the formal communication of the results
of your data analysis.

10.3 Content

The most important guiding principle is to tailor the infor-
mation you deliver to the objective of the communication.
For a targeted question aimed at getting clarification about
the coding of a variable, the recipient of your communica-
tion does not need to know the overall objective of your
analysis, what you have done up to this point, or see any
figures or tables. A specific, pointed question along the lines
of “I’m analyzing the crime dataset that you sent me last
week and am looking at the variable “education” and see
that it is coded 0, 1, and 2, but I don’t see any labels for those
codes. Do you know what these codes for the “education”
variable stand for?”

For the second type of communication, in which you are
seeking feedback because of a puzzling or unexpected issue
with your analysis, more background information will be
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needed, but complete background information for the over-
all projectmay not be. To illustrate this concept, let’s assume
that you have been examining the relationship between
height and lung function and you construct a scatterplot,
which suggests that the relationship is non-linear as there
appears to be curvature to the relationship. Although you
have some ideas about approaches for handling non-linear
relationships, you appropriately seek input from others.
After giving some thought to your objectives for the com-
munication, you settle on two primary objectives: (1) To
understand if there is a best approach for handling the non-
linearity of the relationship, and if so, how to determine
which approach is best, and (2) To understand more about
the non-linear relationship you observe, including whether
this is expected and/or known and whether the non-linear-
ity is important to capture in your analyses.

To achieve your objectives, you will need to provide your
audiencewith some context and background, but providing
a comprehensive background for the data analysis project
and review of all of the steps you’ve taken so far is unneces-
sary and likely to absorb time and effort thatwould be better
devoted to your specific objectives. In this example, appro-
priate context and backgroundmight include the following:
(1) the overall objective of the data analysis, (2) how height
and lung function fit into the overall objective of the data
analysis, for example, heightmay be a potential confounder,
or the major predictor of interest, and (3) what you have
done so far with respect to height and lung function and
what you’ve learned. This final step should include some vi-
sual display of data, such as the aforementioned scatterplot.
The final content of your presentation, then, would include
a statement of the objectives for the discussion, a brief
overview of the data analysis project, how the specific issue
you are facing fits into the overall data analysis project, and
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then finally, pertinent findings from your analysis related to
height and lung function.

If you were developing a slide presentation, fewer slides
should be devoted to the background and context than the
presentation of the data analysis findings for height and
lung function. One slide should be sufficient for the data
analysis overview, and 1-2 slides should be sufficient for
explaining the context of the height-lung function issue
within the larger data analysis project. The meat of the
presentation shouldn’t require more than 5-8 slides, so that
the total presentation time should be no more than 10-
15 minutes. Although slides are certainly not necessary, a
visual tool for presenting this information is very helpful
and should not imply that the presentation should be “for-
mal.” Instead, the idea is to provide the group sufficient
information to generate discussion that is focused on your
objectives, which is best achieved by an informal presenta-
tion.

These same principles apply to the third type of communi-
cation, except that youmay not have focused objectives and
instead you may be seeking general feedback on your data
analysis project from your audience. If this is the case, this
more general objective should be stated and the remainder
of the content should include a statement of the question
you are seeking to answer with the analysis, the objective(s)
of the data analysis, a summary of the characteristics of
the data set (source of the data, number of observations,
etc.), a summary of your exploratory analyses, a summary
of your model building, your interpretation of your results,
and conclusions. By providing key points from your entire
data analysis, your audience will be able to provide feed-
back about the overall project as well as each of the steps
of data analysis. A well-planned discussion yields helpful,
thoughtful feedback and should be considered a success if
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you are left armed with additional refinements to make to
your data analysis and thoughtful perspective about what
should be included in the more formal presentation of your
final results to an external audience.

10.4 Style

Although the style of communication increases in formality
from the first to the third type of routine communication,
all of these communications should largely be informal
and, except for perhaps the focused communication about
a small technical issue, jargon should be avoided. Because
the primary purpose of routine communication is to get
feedback, your communication style should encourage dis-
cussion. Some approaches to encourage discussion include
stating up front that you would like the bulk of the meeting
to include active discussion and that youwelcomequestions
during your presentation rather than asking the audience to
hold them until the end of your presentation. If an audience
member provides commentary, asking what others in the
audience think will also promote discussion. In essence, to
get the best feedback you want to hear what your audience
members are thinking, and this is most likely accomplished
by setting an informal tone and actively encouraging dis-
cussion.

10.5 Attitude

Adefensive or off-putting attitude can sabotage all thework
you’ve put into carefully selecting the audience, thought-
fully identifying your objectives and preparing your con-
tent, and stating that you are seeking discussion. Your audi-
ence will be reluctant to offer constructive feedback if they
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sense that their feedback will not be well received and you
will leave the meeting without achieving your objectives,
and ill prepared to make any refinements or additions to
your data analysis. And when it comes time to deliver a
formal presentation to an external audience, youwill not be
well prepared and won’t be able to present your best work.
To avoid this pitfall, deliberately cultivate a receptive and
positive attitude prior to communicating by putting your
ego and insecurities aside. If you can do this successfully, it
will serve you well. In fact, we both know people who have
had highly successful careers based largely on their positive
and welcoming attitude towards feedback, including con-
structive criticism.



11. Concluding Thoughts

You should now be armed with an approach that you can
apply to your data analyses. Although each data set is its
own unique organism and each analysis has its own specific
issues to contend with, tackling each step with the epicycle
framework is useful for any analysis. As you work through
developing your question, exploring your data, modeling
your data, interpreting your results, and communicating
your results, remember to always set expectations and then
compare the result of your action to your expectations.
If they don’t match, identify whether the problem is with
the result of your action or your expectations and fix the
problem so that they do match. If you can’t identify the
problem, seek input from others, and then when you’ve
fixed the problem, move on to the next action. This epicycle
framework will help to keep you on a course that will end
at a useful answer to your question.

In addition to the epicycle framework, there are also activi-
ties of data analysis that we discussed throughout the book.
Although all of the analysis activities are important, if we
had to identify the ones that are most important for ensur-
ing that your data analysis provides a valid, meaningful, and
interpretable answer to your question, we would include
the following:

1. Be thoughtful about developing your question and
use the question to guide you throughout all of the
analysis steps.

2. Follow the ABCs:
1. Always be checking
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2. Always be challenging
3. Always be communicating

The bestway for the epicycle framework and these activities
to become second nature is to do a lot of data analysis, so
we encourage you to take advantage of the data analysis
opportunities that come your way. Although with practice,
many of these principles will become second nature to you,
we have found that revisiting these principles has helped to
resolve a range of issues we’ve faced in our own analyses.
We hope, then, that the book continues to serve as a useful
resource after you’re done reading it when you hit the
stumbling blocks that occur in every analysis.
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